
The hls4ml project and the future of deploying
ultrafast deep learning on specialized hardware

Vladimir Lončar
For the FastML team

fastmachinelearning.org

https://fastmachinelearning.org

Agenda

Introduction to hls4ml project

Brief history of the project

The current state of the project and recent developments

Potential new directions

2

The original motivation: triggering at (HL-)LHC
At the LHC proton beams collide at a frequency of 40 MHz

Extreme data rates of O(100 TB/s)

“Triggering” - Filter events to reduce data rates to manageable levels

3

Machine learning at LHC

ML is already successfully employed in
offline analysis

1 ns 1 µs 100 ms 1 s

4

Machine learning at LHC

Deploy ML algorithms very early
Challenge: strict latency constraints!

1 ns 1 µs 100 ms 1 s

5

L1 trigger hardware
We need fast processing of raw data O(µs)

- Not possible to use common hardware, such as
Intel CPUs

Must be flexible and modular to support
reconfiguration and upgrade/maintenance of modules

➔ Field-programmable gate arrays (FPGAs)

At HL-LHC hundreds of such devices will be used

6

High-level synthesis for machine learning
FPGAs are programmed using Hardware Description Languages (HDLs)

- VHDL, Verilog

High Level Synthesis (HLS)
- Develop in C/C++ and compile to HDL
- Drastic decrease in firmware development time!

hls4ml is a library for translating neural networks into FPGA firmware

- Available as a Python package: pip install hls4ml

Inference with extremely low latency by using on-chip weights

- Much faster access times ➞ lower latency
7

Model

Supported DL frameworks:

Quantized
model

Quantization and pruning
techniques:

- QKeras + AutoQ
- QONNX

hls4ml

Model conversion,
optimization, profiling &

tuning

HLS project Hardware

Xilinx and Intel/Altera FPGAs

High-level synthesis for machine learning

8

https://github.com/google/qkeras
https://github.com/fastmachinelearning/qonnx

A growing project
First paper published in 2018

- Currently ~20 papers published

In development since late 2017

Growing number of code contributions

9

https://arxiv.org/abs/1804.06913
https://fastmachinelearning.org/#projects

The current feature-set
Supported network architectures:

- DNNs - arxiv:1804:06913

- CNNs - arxiv:2101:05108

- Graph NNs - GarNet architecture - arxiv:2008.03601

Tunable features
- User controllable trade-off between resource usage and latency/throughput
- Weights can be stored in registers or block RAM

Model compression

- Resource-efficient designs for pruned models
- Quantization with QKeras integration - arxiv:2006.10159

- Binary/Ternary layers (computation without using DSPs) - arxiv:2003.06308 10

https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2101.05108
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2003.06308

Interoperability with the other ML tools
QKeras (website)

- Quantized Keras
- Includes quantizers for weights and activations

- Drop-in replacements for Keras layers
- Developed in collaboration with Google

QONNX (website)

- A dialect of ONNX that adds quantization operators
- Collaboration with Xilinx FINN team
- Exportable from Brevitas (quantized PyTorch)

- Enabling interoperability with FINN
11

https://github.com/google/qkeras
https://github.com/fastmachinelearning/qonnx
https://xilinx.github.io/finn/
https://github.com/Xilinx/brevitas/

Applications - Anomaly detection
We throw away most LHC collision events in our Level 1 Trigger system

- Our selections are well motivated for analyses, but: what if we are missing something?
- Can we trigger on events which look “anomalous” compared to the Standard Model

background?

Unsupervised learning using autoencoders (paper)

- Both DNN and CNN architectures, pruned with QKeras
- Ultra low latency (O(100ns))

12

https://arxiv.org/abs/2108.03986

Applications - Computer vision
Streaming implementation for larger CNN architectures (paper)

- Serial processing of input pixels
- Demonstrated Street View House Numbers digit recognition in ~5 μs

Collaboration with Zenseact

- Autonomous driving
- Semantic segmentation with ENet model in ~4 ms

13

https://arxiv.org/abs/2101.05108

Projects integrating hls4ml
ESP4ML (paper)

- A system-level design flow to build and
program SoC architectures for embedded
applications that require the hardware
acceleration of machine learning algorithms

AIgean (paper)

- An open framework to build and deploy
machine learning (ML) algorithms on a
heterogeneous cluster of devices

- A unison of hls4ml and Galapagos, the
framework for multi-FPGA deployment

14

https://arxiv.org/abs/2004.03640
https://dl.acm.org/doi/10.1145/3482854

Features in development (not exhaustive)
Graph NNs with PyTorch Geometric (PyG) - PR by Elabd et al.

- Two HLS implementations:
- Throughput-optimized: Lower latency, greater resource-usage -> Smaller graphs
- Resource-optimized: Greater latency, lower resource-usage -> Larger graphs

- Used for particle track reconstruction at CMS L1T

Recurrent NNs
- LSTM and GRU - PR
- Low-latency LSTM implementation with balanced II - Applied in gravitational wave

experiments (paper)
- LSTM implementation for Intel/Altera FPGAs - Used for energy reconstruction

in ATLAS LAr Calorimeter (paper)
Online training with reconfigurable weights (paper) 15

https://github.com/fastmachinelearning/hls4ml/pull/379
https://github.com/fastmachinelearning/hls4ml/pull/329
https://arxiv.org/abs/2106.14089
https://link.springer.com/content/pdf/10.1007/s41781-021-00066-y.pdf
https://arxiv.org/abs/2103.14007

Optimizers

Recent changes
New modular architecture

- Overhaul of the internal representation (IR)
- Designed to be extensible and hardware-agnostic

Converters hls4ml IR HardwareBackends

16

New FPGA platforms - Intel/Altera
Initial support for Quartus HLS has been added to hls4ml

Currently only supporting DNN models

- Thanks to the flexibility of the new IR and the shared backend architecture, support for
models quantized with QKeras comes automatically

Ongoing effort to bring features of Vivado backend

- Low latency CNNs
- Streaming implementations for all model architectures

17

Multi-FPGA-vendor / ASIC backend - Catapult
Intel and Xilinx HLS tools place restrictions on how their tools can be used

- Tied to the vendor’s FPGA, cannot be used to create an ASIC

Supporting Catapult HLS from Siemens is underway

The early version of this backend was used for the development of ECON-T ASIC

- Data compression using an autoencoder
- Frontend chip compresses data to be sent to L1 Trigger

18

https://arxiv.org/abs/2105.01683

New feature development
Versatile IR can represent any neural network

- Conceptually simple, easy to use and debug
- Fully extensible with custom data types, precision and attributes

Backends are fully independent

- May target different hardware architectures
- May have multiple implementations for different use-cases

Fine-grained control over the translation process

- The flow of changes to IR is divided into stages for simpler handling

A stable platform enabling many new independent developments
19

Potential future directions
The new modular architecture of hls4ml allows us to position it as the research
platform for the wider scientific community

Several potential directions:

- Support for deployment of novel model architectures
- Research of model compression techniques and efficient hardware

implementations around them
- Deployment on specialized hardware platforms, beyond the Xilinx FPGAs
- Development of tools for interoperability with the existing ML/DL ecosystems
- …

20

New model architectures - Transformers
Inference of RNN and LTSM models is an intrinsically sequential computation task

- Small amount of parallelism limits the size of the models and potential applications for
extremely low latency applications

The Transformer architecture enables a high level of computation parallelism
- Suitable for massively parallel hardware like FPGAs

However, transformers can become very large!
- Implementations of transformers in FPGAs rely on heavy pruning (paper)
- Sparse matrix multiplication is central to implementation of larger models
- Research into making transformers much smaller is ongoing

Due to the inherent parallelism, transformers may be split over multiple FPGAs with
AIgean 21

https://arxiv.org/abs/2007.08563

Bayesian Neural Networks (BNNs)
BNNs are able to understand and express uncertainty in their prediction

- Allows us to build more robust models, e.g., for L1T (paper)

BNNs can be constructed using DL researchers is TensorFlow Probability (TFP)
- Keras-like interface ➔ easy to support in hls4ml

The most important missing piece in HLS code is the support for sampling from a distribution
that is needed to generate the weights

- We can use the Linear Feedback Shift Register (LFSR)

Implementations of BNNs on FPGAs already exist
- BNN inference through Monte Carlo Dropout (MCD) (paper)
- The uncertainty estimation and prediction is obtained by running the same input through the BNN

multiple times and averaging the outputs.
- Several caching optimizations are proposed to decrease the amount of computation required

making the approach very interesting for latency-oriented hls4ml 22

https://arxiv.org/abs/1904.10004
https://arxiv.org/abs/2105.09163

Enhancing support for CNNs
New implementation of convolution algorithm for small CNNs

- Low latency, O(100ns), instruction-based CNN implementation
- Used for primary vertex reconstruction for the upgrade of the

CMS L1 trigger

Tiled implementation

- Process portions (tiles) of the input image in parallel
- Compromise between resource-intensive fully unrolled

implementation and sequential streaming implementation
- Targeting O(1us) latency

Credit: Chris Brown et al.

23

https://indico.cern.ch/event/855454/contributions/4596770/

Training quantized models
hls4ml supports quantized models trained with QKeras, however getting good
agreement between QKeras model and hls4ml model is not easy

- Main reason is the difference in implementation and data types used
- After applying optimizations like layer fusion it becomes difficult to track and debug

divergence between the two models

A simpler alternative can be implemented using existing hls4ml routines
- Still rely on TF for backpropagation

Layer.call(x)

C++

Python

custom_op(x)

op.Compute(ctx)

Convert to fixed
precision nnet_utils

Convert to float
precision

Return tensor

24

Novel pruning techniques
Pruning is one of the two main techniques that allows us to deploy larger models

- Currently limited to fully unrolled designs

Central to the possibility of future exploration of pruning techniques is the ability to
do sparse matrix multiplications in hls4ml

Leverage structured sparsity for optimal implementations
- Implementations relying on common Compressed Sparse Row (CSR) storage format

suffer from large index overhead when the values of the matrix uses narrow bit-width
data type (i.e., are quantized)

- Methods based on block pruning that leverage block-sparsity to define an efficient
compressed format should be explored

25

Pattern pruning for CNNs
Unstructured pruning of CNN kernels can achieve higher sparsity than the structured
pruning methods with the same accuracy

- Unstructured pruning methods suffer from bad hardware efficiency, especially for models that
are also quantized

- Structured pruning allows for efficient implementations of matrix multiplications, but suffers
due to lack of intra-kernel sparsity

The pattern pruning offers a compromise (paper)
- A pattern is defined as the positions of nonzero values in a kernel
- Offers an opportunity to exploit intra-kernel sparsity much like unstructured pruning, while

benefiting from the resource saving obtained from structured pruning
- By reducing the total number of patterns in a model, we can create low-latency designs

focused on unrolled implementations of only these patterns
- Iterative process leveraging existing unstructured pruning methods (e.g., from TF MOT) 26

https://ieeexplore.ieee.org/document/9672138

Open-source FPGA backend - Bambu
Most HLS tools are commercial and require a (costly) licence to use

- A case can be made for fully open-source translation flow

Bambu is a free, feature-rich and actively-developed HLS compiler that works with
standard C/C++

Developers of Bambu have expressed interest in enhancing hls4ml:

- Enhancing portability of the generated C++/HLS code
- The use of custom floating point types

The expanded flexibility of the core of hls4ml allow for this effort to continue

27

https://panda.dei.polimi.it/?page_id=31
https://arxiv.org/abs/2103.13060

New hardware platforms - Xilinx DPU
The Xilinx Deep Learning Processing Unit (DPU) is a programmable engine optimized for
convolutional neural networks

- Introduced as part of the Vitis AI platform that contains tools to prune and quantize CNN models

DPU has several implementations for different precision and resource/throughput requirements

Vitis AI has several limitations
- Limited customization, no support for QKeras, pruning optimizer is commercial etc

Vitis AI uses the Xilinx Intermediate Representation (XIR) as the graph representation of the
models, and possesses tools for executing these graphs on the DPUs

- A Python interface to bridge hls4ml IR to XIR is possible
- Supporting the Vitis platform will significantly broaden the scope of hls4ml and simplify deployment on

Xilinx accelerators
28

New hardware architectures - CPU/GPU
The extensibility of the new IR shines again

- Extension of type system to use floating point types
- Extension of NN tensors with a concept of external memory

oneAPI prototype

- Backend that emits DP C++ that uses oneDNN library

Alpaka

- An abstraction library for accelerator development
- Integrated in CMSSW, to be used for HLT development

Credit: R. Abrahamse

29

https://cds.cern.ch/record/2788556

Summary
hls4ml - software package for translation of trained neural networks into synthesizable
FPGA firmware

- Tunable resource usage latency/throughput
- Fast inference times, O(10 ns) - O(1 ms)

Under heavy development on multiple directions

- Backends for new hardware platforms, compression tools, applications…

More information:

- Papers: https://fastmachinelearning.org/#projects
- Code: https://github.com/fastmachinelearning/hls4ml
- Tutorial: https://github.com/fastmachinelearning/hls4ml-tutorial

30

https://fastmachinelearning.org/#projects
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial

