Beam transfer for NA neutrinos: Extraction from SPS

B. Goddard, F.Velotti, A.Parfenova, R.Steerenberg, K.Cornelis, W.Bartmann, V.Kain, E.Carlier, A.Alekou, M.Meddahi, L.Jensen V.Mertens,

A.Kosmicki, J.Osborne, I.Efthymiopoulos

Extraction feasibility studies – Nonlocal extraction kickers

- Reminder: very difficult to integrate kickers into LSS2, so exploring the idea to use other SPS kickers :
 - LSS2 extraction using LSS1 MKP kicker (limited to ~100 GeV)
 - LSS2 extraction using LSS6 MKE kicker (up to 450 GeV)
 - LSS2 extraction using LSS4 MKE kicker (up to 450 GeV)
 - In reserve...
- Concentrated so far on extraction with LSS1 MKP

Non-local extraction kicker

Aperture quantification, with SPS orbit

Many aspects still to be considered

- Kicker upgrade + timing + controls
 - Extraction pre-pulse, double extraction a la CNGS, BETS
 - Timing destination
 - ..
- BI in transfer line and extraction region working for slow and fast extracted beam
- Machine protection interlocking
 SPS ring and lines
- For the time being no show stopper.
- Time line: first beam in 2017

Critical aspects specific to LSS2FE

- Accidental large orbit bumps in the SPS arc
- Phase advance changes
 - Measurement of amplitude dependence of phase advance: negligible

• The machine protection system must protect against these

SPS measurements (I) 4/09/2012: LSS1 – LSS2 phase advance checks

- Phase advance scatters within ±15° around value expected from linear lattice (20.5°)
- No tune dependence on oscillation amplitude or intensity

Interlock Controllers a la LSS4/LSS6 (1)

- LSS1 "straight forward" conceptually
 - Master BIC for MKP:
 - Decides between injection and LSS2 extraction

SPS permit could also only go into TT10

Interlock Controllers a la LSS4/LSS6 (2)

- Local "slave" BICs
- Cables from LSS2 to LSS1 for slave BIC results
- Need to define which equipment to interlock:
 - Bumpers, septa, ZS out, orbit bump for circulating beam with BPMs
 - Transfer line power converters, trajectory, BLMs
 - Target
 - Orbit in arc(s) between kicker and LSS2. SIS? Only orbit correctors or orbit reading as well?
 - Tune/ phase advance. Interlock power converters for QF or QF1 and QF2 if tune split needed.
 - Intensity interlock: tune shift

Extraction kicker in LSS6

- Study should cover Short Base Line Neutrino Facility (100 GeV) AND Laguna (400 GeV)
- MKP does not give enough kick at 400 GeV
 Rise time < 1 us, 11 us flattop
 - OK for double extraction
- MKE LSS6 kick up to 450 GeV
 - Rise time 6-7 us
 - Not OK for double extraction \rightarrow upgrade needed

LSS6 crowded

- LSS6 master BIC full.
 - Daisy chain of slave BICs to combine entries?
 - Change of master BIC equation
 - Details to be investigated
- There is also AWAKE

TESTS WITH BEAM

LSS1 – LSS2: MD with pilot/indiv

• 17/9/2012

- 110 GeV cycle
- LHC pilot, indiv
- Aperture checked, fine
 - 7 um emittance

Test was successful!

Further tests planned

- LSS1 LSS2, 100 GeV: low intensity fixed target beam – Aperture checks
- LSS6 LSS2, 440 GeV: HiRadMat cycle, with HiRadMat destination, pilot beam.
 - Mask bumpers to be able to zero extraction bump
 - Check aperture bottleneck in LSS1 (at dumps)

- No test planned for LSS4
- No interlocking modifications required in 2012

Summary

- Non-local extraction works on paper and in the machine
 - …at least with low intensity
 - More tests to come this year
- Two options investigated:
 - MKP: 100 110 GeV, double extraction possible, but RCPS upgrade needed
 - MKE LSS6: 400 GeV, only single extraction for the time being
- Machine protection
 - conceptually more straight forward for LSS1
 - should be able to find solution for LSS6 as well
 - Interlocking on orbit and orbit correctors critical
 - Non-local extraction \rightarrow long cables
 - LSS2/TT20 equipment (instrumentation and power converters) needs upgrade to be interlocked

EXTRA SLIDES

Phase advances – 2012 optics

LSS1->LSS2: LHC Q26

- lss1_deltamu = 4.1895 (68.22 deg);
- kick_2 = 0.929 ;

LSS6->LSS2: CNGS

- lss6_deltamu = 9.0675 (24.29 deg);
- kick_6 = 0.411;

LSS6->LSS2: LHC Q26

- lss6_deltamu = 8.8998 (323.94 deg);
- kick_6 = -0.589;

LSS6->LSS2: LHC Q20

- lss6_deltamu = 6.8491 (305.60 deg);
- kick_6 = -0.812;

B.Goddard

LSS2 closed orbit bump

- New bump shape with huge 60 mm excursion in QFA216
- Very small leakage (rms ~0.3 mm) no losses or issues

Aperture and loss scans

- 4e11 p+, 110 GeV, blown up to 7 um.mrad to approach CNGS parameters
- Issue seen with too-fast bumper functions, corrected

