

The COLUTA ADC ASIC and the ATLAS HL-LHC Liquid Argon Front-End Readout

Gabriel Matos

O.B.O the ATLAS Liquid Argon Calorimeter Group

September 20, 2022

✤ ATLAS LAr Calorimeter & the High-Luminosity LHC Upgrade

✤ COLUTAv4 ADC

✤ Front-End Board "2" (FEB2)

Conclusions

✤ ATLAS LAr Calorimeter & the High-Luminosity LHC Upgrade

COLUTAv4 ADC

Front-End Board "2" (FEB2)

Conclusions

ATLAS LAr Calorimeter

- * ATLAS LAr calorimeter captures energy and timing info of EM and hadronically interacting particles
- * Calorimeter divided into EM barrel, the EM and hadronic end-caps, and forward calorimeter
- Readout electronics system samples cells at LHC frequency of 40 MHz and sends digitized pulses of interactions off the detector for signal analysis and triggering
 - Front-end boards (FEBs) are located on cryostat for optimal analog performance: high radiation, high magnetic field, limited access
 - Off-detector electronics apply digital filtering to extract energy and time for each cell, pass info to trigger & DAQ

The High Luminosity LHC

- ✤ High Luminosity LHC (HL-LHC) scheduled to begin operation in ~2029
 - Will allow for up to 7x design luminosity (~200 simultaneous collisions) and provide access to very rare new physics processes and more precise measurements of the Higgs coupling
- ♦ Original on-detector electronics good up to 1,000 fb⁻¹ (out of the 4,000 fb⁻¹ expected for HL-LHC)
 - Expect a 200x increase in readout data rate + stringent radiation requirements
 - To accommodate the HL-LHC data volume and for ageing components, need to replace all readout electronics (1524 FEBs, 120 calibration boards, off-detector components)*

HL-LHC LAr Calorimeter Front-End Readout

- ✤ Front-end readout at the HL-LHC provided by Front-End Board "2" (FEB2) boards
- * Design requires implementation of custom-built ASICs due to radiation tolerance requirements
 - 16-bit dynamic range pre-amp/shaper (PA/S) with two gain scales (hi/lo~25), ADC, and lpGBT 10 Gbit/s serializers
- This talk will focus on the performance of the COLUTA LAr ADC + give a brief overview of the development and testing of the FEB2s

* ATLAS LAr Calorimeter & the High-Luminosity LHC Upgrade

✤ COLUTAv4 ADC

Front-End Board "2" (FEB2)

Conclusions

COLUTAv4 (CV4) ADC Overview

- ✤ Final prototype (4th iteration) of full custom COLUTA ADC ASIC
- ✤ 8-channel, 15-bit, A/D converter
 - 3.5-bit Multiplying DAC (MDAC) followed by 12-bit Successive Approximation Register (SAR)
 - Digital Data Processing Unit (DDPU) applies calibration bit weights and serially transmits data at 640MBPS
- ✤ TSMC 65nm LP CMOS
 - 5.585 x 5.454 mm² chip die
 - 4.3 million transistors
 - 1.2 V operation with 2 V_{pk-pk} differential input
- Digitizes both lo/hi gains of LAr calorimeter channels
 - Digitization at 40 MSPS
 - \geq 14-bit dynamic range and >11-bit ENOB precision
 - Seamless interface to PA/S, lpGBTs
 - On-chip calibration circuit for MDAC and SAR
 - Derived calibration weights stored in DDPU
 - Radiation tolerance for HL-LHC

Test Setup & Noise Measurements

 \clubsuit CV4 testboards with either socketed or soldered chip

- Chs. 1, 4: transformer input
- Ch. 2: commercial amplifier input
- Ch. 3: connected to 16-bit onboard DAC
- Chs. 5-8: connected to PA/S prototype
 - $5,8 \rightarrow \text{lo gain}; 6,7 \rightarrow \text{hi gain}$

Socketed board used for QA/QC, soldered for performance

- ✤ Pedestal measurements on chs. 1, 4
- ✤ ~1.2 ADC counts RMS of noise
- ✤ Featureless pedestal FFTs

Sine Wave Performance

- * Assess performance by varying amplitude and frequency of input sine signal
 - Input sine provided by AWG connected directly to board with filter and/or attenuators
 - FFTs at roughly full-scale show ~12b ENOB (spec. >11b @ 8MHz)
 - Performance across frequency range exceeds spec. up to Nyquist

Sine Wave Performance

- * Assess performance by varying amplitude and frequency of input sine signal
 - Input sine provided by AWG connected directly to board with filter and/or attenuators
 - FFTs at roughly full-scale show ~12b ENOB (spec. >11b @ 8MHz)
 - Performance across frequency range exceeds spec. up to Nyquist

DNL & INL Measurements

Slow sine input (~200 kHz) used to test for nonlinearity

* DNL computed from linearized transition voltages V_j and INL from linear fit*

• Results (shown in 15b LSBs) show no missing codes

Run 1334, channel2, Slow Sine Freq.: 205.0 kHz

◆ DNL -0.07/+0.08 (spec. -1.0/+1.0 12b LSBs), INL <0.03% (spec. <0.1%)

^{*}See backup

Radiation Tolerance

* Radiation testing performed at Mass General Hospital (Boston) proton treatment facility

***** Irradiated five chips beyond the spec. ($\sim 5 \times 10^{13} \text{ p/cm}^2$)

- No performance degradation post-irradiation (assessed w/ sine wave performance)
- General chip health (current draw, temperature) stable through irradiation
- Preliminary count of triple redundant configuration corruptions 3 orders of magnitude better than previous chip version (CV3)
 - > Due to moving triple redundant DFFs storing configuration bits further apart
- Measurement of radiation induced effects (i.e. single event upsets (SEUs)) ongoing
 - Assessed by connecting onboard DAC to CV4 input + sweeping DAC over analog input range and histogramming in FPGA

♣ Thus far produced 20 packaged chips in QFN100, produced in MPW \rightarrow 18/20 chips functional

- Investigating remaining two, may be possible to recover
- Functional chips show good performance out-of-the-box
 - E.g. sine performance on channel 1 at ~full-scale >11b ENOB across all functional chips

Final design review scheduled for Oct. 7

- Launch pre-production engineering run, followed by production of 80k chips
- Future batches will be in BGA packaging
- <u>Robotic test setup</u> being developed by UT Austin & Saclay for mass testing

* ATLAS LAr Calorimeter & the High-Luminosity LHC Upgrade

COLUTAv4 ADC

✤ Front-End Board "2" (FEB2)

Conclusions

FEB2 Overview (1)

* FEB2 boards will provide the front-end readout of both gains of the LAr calorimeter

- 128 channels/board, with a total of 1524 boards for calorimeter
- Readout chain composed of PA/S (×32) \rightarrow ADC (×32) \rightarrow lpGBT (×24) \rightarrow VTRx+ (×8)

September 20, 2022

FEB2 Overview (2)

- Redundant bi-directional control/monitoring provided using lpGBTs 12 & 13
 - Control lpGBTs provide phase programmable 40MHz clock
 - Operational phases w.r.t. I2C clock found through clock parameter scan procedure
- ✤ VTRx+ implemented for data + control links
- DC-DC converters bring down 48V input, while LDOs provide final power rails at 1.2V and 2.5V (PA/S & VTRx+)

FEB2 Pre-Prototype: Slice Testboard

- Integration test of FEB2 components performed with pre-prototype FEB2 Slice Testboard
 - A "slice" of full FEB2 → same chip density + layout as final boards
 - 32 of final 128 channels implemented
- ✓ Validated I2C interface and redundant control
- \checkmark Noise and pulse performance thoroughly assessed
 - Triangle LAr current pulses injected through two injector loads corresponding to $25\Omega/50\Omega$ input impedance settings of PA/S

FEB2 Slice Testboard Performance

✤ Noise performance dominated by detector capacitance + PA/S

Setting	LG Noise [ADC]	HG Noise [ADC]	Hi/Lo Gain Ratio
25Ω	4.0	19.2	25.6
50Ω	4.0	35.65	37.4

- Pulse performance determined from pulsing board at amplitudes spanning the dynamic range
 - Apply digital filters to pulse measurements for energy/timing
 - Energy resolution ~.02% for large pulses (spec. <0.25%)
 - **Timing resolution ~ 50 ps** (dominated by ext. system)

FEB2 Prototype Timeline

- Integration test of FEB2 through the Slice Testboard meets and exceeds specs.
- Next step in testing is the FEB2 prototype
 - Full 128 channels
 - ASICs to be packaged in BGA (instead of current QFP/QFN)
 - Updating to latest prototypes of PA/S, ADC ASICs
- ➤ Timeline
 - **Present:** Finalizing FEB2 prototype design
 - Rad-tolerant power testing at INFN Milano
 - Characterizing integration between latest PA/S and ADC ASICs
 - Finalize selection of rad-hard LDOs
 - Nov. 2022: FEB2 preliminary design review
 - Early 2023: fabrication of 2 FEB2 prototype boards with "almost final" design + ASICs
 - 2023: Front-end system crate test with 14 FEB2 boards (1% of full scale)
 - **2024-2026:** Full production of 1524 FEB2s

* ATLAS LAr Calorimeter & the High-Luminosity LHC Upgrade

COLUTAv4 ADC

Front-End Board "2" (FEB2)

Conclusions

Conclusions

✤ HL-LHC increase in luminosity and data volumes

- Replacement of readout electronics for ATLAS LAr calorimeters
- Provided overview of the COLUTA LAr ADC
 - Currently in fourth and final prototype iteration
 - Characterized sine performance, nonlinearity, and radiation tolerance
 - Performance meets and exceeds specs. for HL-LHC
 - > CV4 is ready for final design review (Oct. 7) and pre-production
- Provided overview of FEB2 design and integration testing with FEB2 Slice Testboard
 - Validated I2C interface, redundant control structure, noise and pulse performance
 - Currently finalizing design of FEB2 prototype for preliminary design review (Nov.)

THANK YOU!

This research is supported by the US National Science Foundation under Grant No. PHY 1948993, PHY 2013070, and US Department of Energy Grant No. DE-SC0007890

BACKUP

COLUTAv4 Channel (x8) Block Diagram

MDAC Calibration Process

Procedure

- 1) Assert V_i
- 2) Force S_i
- 3) Measure $D_{OUT,i}^{SAR}$
- 4) Force S_{i+1}
- 5) Measure $D_{\text{OUT},i+1}^{\text{SAR}}$
- 6) Calculate $W_i = D_{\text{OUT},i}^{\text{SAR}} D_{\text{OUT},i+1}^{\text{SAR}}$
- 7) Repeat for i = 1 to 8
- DDPU uses W₁,...,W₈ to "stitch together" subranges and create a linear transfer function

$$D_{\text{out}}^{\text{MDAC+SAR}} = D_{\text{OUT}}^{\text{SAR}} - 4096 + \sum_{i=1}^{8} W_i \cdot b_i$$

- ✤ All calibration circuitry is on-chip
- ✤ MDAC calibration is done after SAR calibration

Slow Sine DNL/INL Methodology

Derive transition voltages (method outlined in <u>this document</u>)

Transition voltages takes sine histogram (left) and linearizes it (right)

• Use to define
$$DNL_j = \frac{V_{j+1} - V_j}{1 \text{ LSB}} - 1$$
 and $INL_j = \frac{V_j - V_{\text{fit},j}}{1 \text{ LSB}}$

FEB2 Clock Distribution

- To achieve analog performance goals, FEB2 needs "clean power" at 1.2V and 2.5V (PA/S & VRTX+)
 - FEB2 on-board powering scheme uses DC-DC convertors to get from 48 V input down to "close to" the final voltages, followed by LDOs for final power rails
 - LT3080 (on Slice Testboard) showed hard failures during radiation testing
- 1. Solution for 1.2 V: CMS rad-hard LDO for developed for HGCAL (max Vout = 1.5 V; does not work for 2.5 V ASICs)
 - A few rounds of pre-prototypes have been successfully produced and tested, meeting CMS performance specs
 - New FEB2 power scheme would require up to 48 CMS LDOs per board (updated power budget = 101 W/board)
 - Need to pin down possible remaining concern about single-effect transients (SET) via additional proton test
 - Testing possible with Analog Testboard, finalizing mezzanine design
- 2. Solution for 2.5 V: reuse ST LHC4913 from original construction
 - Need ~3500 in total: possibility to assemble through stock of spare FEB parts, plus other spares, plus recovering LDOs from spare FEB boards at CERN
 - Finalizing inventory of available devices

Slice Testboard Layout

Pulse Analysis Overview

Multichannel Performance of Slice Testboard

* Energy resolution of ~0.02% and timing resolution of ~50 ps consistent across Slice Testboard channels for both 25 and 50Ω modes (here 50Ω is shown)

Integration of ALFE2 with COLUTA

- ♦ ALFE2 PA/S \rightarrow replaces LAUROC (currently in Slice Testboard)
 - Integration with CV4 assessed on the CV4 Testboard
 - ↔ Pedestal noise up to \sim 2x better than CV3+LAUROC

Setting	CV3 + LAUROC LG Noise [ADC]	CV3 + LAUROC HG Noise [ADC]	CV4 + ALFE2 LG Noise [ADC]	CV4 + ALFE2 HG Noise [ADC]
25Ω	4.0	19.2	2.57	14.02
50Ω	4.0	35.65	2.28	18.84

 \bullet Energy resolution down to ~0.02% for largest pulses

* On par with Slice Testboard results and well within specs

