Simulated verification of ASIC functionality & radiation tolerance for HL-LHC ATLAS ITk Strip detector

Jeff Dandoy
University of Pennsylvania
On behalf of the ATLAS ITk Collaboration

Topical Workshop on Electronics for Particle Physics 20 Sept. 2022

ATLAS Inner Tracker for HL-LHC

- ITk will replace current ATLAS Inner Detector for HL-LHC (installation in ~2027)
 - Track charged particles in busy environment of ~200 simultaneous collisions
 - Operate for >10 years to collect 10x more data (4000 fb⁻¹)
 - Survive in high-radiation environment, up to ~1000 MRad (inner) or 50 MRad (outer)

ATLAS Inner Tracker for HL-LHC

- ITk will replace current ATLAS Inner Detector for HL-LHC (installation in ~2027)
 - Track charged particles in busy environment of ~200 simultaneous collisions
 - Operate for >10 years to collect 10x more data (4000 fb⁻¹)
 - Survive in high-radiation environment, up to ~1000 MRad (inner) or 50 MRad (outer)
- Upgrading to all-silicon tracker:
 - Larger radius (1 m)
 - Finer segmentation (50-75 µm)
 - Coverage expanded $(\eta = 4)$
 - Faster readout (1 MHz)

ATLAS Inner Tracker for HL-LHC

- ITk will replace current ATLAS Inner Detector for HL-LHC (installation in ~2027)
 - Track charged particles in busy environment of ~200 simultaneous collisions
 - Operate for >10 years to collect 10x more data (4000 fb⁻¹)
 - Survive in high-radiation environment, up to ~1000 MRad (inner) or 50 MRad (outer)
- Upgrading to all-silicon tracker:
 - Larger radius (1 m)
 - Finer segmentation (50-75 µm)
 - Coverage expanded $(\eta = 4)$
 - Faster readout (1 MHz)
- Immense project to design, verify, build, test, & operate
 - 165 m² of active silicon sensor
 - 60 million readout channels
- 280,000 ASICs

3 ASICs for ITk Strip detector

- Charged particles activate strips of silicon sensors
- ABC (ATLAS Binary Chip) reads 256 sensors, digitize & compress data into clusters

3 ASICs for ITk Strip detector

- Charged particles activate strips of silicon sensors
- ABC (ATLAS Binary Chip) reads 256 sensors, digitize & compress data into clusters
- HCC (Hybrid Controller Chip) serializes data @ 640 MHz for up to 11 ABCs, transmits commands & buffers trigger requests

3 ASICs for ITk Strip detector

- Charged particles activate strips of silicon sensors
- ABC (ATLAS Binary Chip) reads 256 sensors, digitize & compress data into clusters
- HCC (Hybrid Controller Chip) serializes data @ 640 MHz for up to 11 ABCs, transmits commands & buffers trigger requests
- AMAC (Autonomous Monitoring And Control) monitors voltages / currents / temperatures with automatic system interrupts
- Several design iterations for evolving needs (bandwidth, rad-hard), final "StarV1" versions now approved

Simulation testbench

now supported by FOSSi Foundation

- Verify digital designs using python-based <u>cocotb</u>
 - Coroutine cosimulation testbench
 - Start & stop simulation according to signal conditions
 - Full access to DUT hierarchy
 - More info @ public <u>CERN seminar</u> by Ben Rosser
- Python-based verification benefits from extensive ecosystem & quick learning curve
 - Complex tests & manageable "feature creep"
 - Automated, self-contained performance monitors
 - Contributions driven by non-experts & students

Flavors of simulation

- Simulations run at
 - Register Transfer Level (hardware description language)
 - Post-synthesis (compiled to logic gates)
 - Place & Route (logic mapped to physical locations)
- ASICs tested standalone & all-together, connecting designs to form a module = 1 AMAC, 2 HCCs, & 22 ABCs
 - Corrected mismatches in complex inter-ASIC communication & configuration
- Test suite ran daily via continuous integration
 - 100's of unit tests give ~full coverage

Dense P&R logic of HCC

Overall Instance-Based Coverage

Coverage report for HCC unit tests

Overall Average	Overall Covered	Block Average	Block Covered	Expression Average	Expression Covered	Toggle Average	Toggle Covered
96.54%	96.08% (58216/60590/5041)	99.54%	97.19% (6049/6224/310)	94.11%	93.19% (1150/1234/52)	94.50%	96.02% (51017/53132/4679)

Advanced module simulations

- Dozens of realistic tests w/ randomized data flow based on HL-LHC expectations
 - Trigger rates (~1 MHz), cluster occupancy (10-20 hits), signal timing (<25 ns), LHC beam structure
 - Long weekend tests for statistics + long-term behavior (1 hour real time = 7 ms simulation time)
- Scanned maximum operating rates, easily exceed design requirements of 1 MHz triggering for ~19 clusters per event (busiest expected @ HL-LHC)

Advanced module simulations

- Dozens of realistic tests w/ randomized data flow based on HL-LHC expectations
 - Trigger rates (~1 MHz), cluster occupancy (10-20 hits), signal timing (<25 ns), LHC beam structure
 - Long weekend tests for statistics + long-term behavior (1 hour real time = 7 ms simulation time)
- Scanned maximum operating rates, easily exceed design requirements of 1 MHz triggering for ~19 clusters per event (busiest expected @ HL-LHC)
- Studies of anomalous noise bursts show large operating margins, always with full recovery
 - Insights led to improvements to reset behavior for easier detector operation if / when necessary

Multi-level triggering

- Scrutiny of realistic performance metrics (trigger response latency, % data loss, etc.)
- Allowed feasibility studies of multi-level triggering
 - 3 trigger prioritization levels allow for on-detector track triggering

Multi-level triggering

- Scrutiny of realistic performance metrics (trigger response latency, % data loss, etc.)
- Allowed feasibility studies of multi-level triggering
 - 3 trigger prioritization levels allow for on-detector track triggering
- Realistic HL-LHC simulation informed operational phase-space of multi-level triggering
 - Not adopted for HL-LHC start, functionality remains for possible future adoption

Radiation concerns & protections

- ASICs subject to Single-Event Effects (SEE) from high energy particles
 - Single-Event Upsets (SEU): Ionizing particle causes permanent state change in flip-flop (reg)
 - Single-Event Transients (SET): Voltage pulse temporarily inverts logic gates (wire)
- "StarV0" design included initial protection:
 - Encoded inputs / outputs (6b8b / 8b10b), hamming encoding of finite-state logic
 - Some triplication of critical flip-flops, duplication of critical configuration registers

Sandro Bonacini

Radiation concerns & protections

- ASICs subject to Single-Event Effects (SEE) from high energy particles
 - Single-Event Upsets (SEU): Ionizing particle causes permanent state change in flip-flop (reg)
 - Single-Event Transients (SET): Voltage pulse temporarily inverts logic gates (wire)
- "StarV0" design included initial protection:
 - Encoded inputs / outputs (6b8b / 8b10b), hamming encoding of finite-state logic
 - Some triplication of critical flip-flops, duplication of critical configuration registers
- After demonstrated SEE sensitivities, "StarV1" focused on full protection:
 - Deglitch circuits on inputs / outputs
 - Triple modular redundancy w/ voter triplication (via CERN tmrg tool)

Triple modular redundancy w/ voter triplication **Unprotected** Circuit Circuit Circuit Circuit **Voter** Circuit Voter Circuit Voter Circuit Circuit Circuit Circuit Circuit Circuit Circuit Voter

Tradeoffs of triplication

- Triplication is physically expensive & required design tradeoffs
 - Enlarged design footprint (HCC) & reworked floorplan to route congestion (HCC, ABC, AMAC)
 - Smaller memory buffers (HCC, ABC), replaced SRAM → FIFO (HCC)
 - Reduced set of observables automatically monitored (AMAC)
- Not triplicated: I/O & storage (physics data)

 \leftarrow 3560 μm \rightarrow

HCCStarV1 $4226\mu m$

- Performed on all 3 ASICs, following will focus on HCC in module-level simulations
- SEE simulations inject logic flips during realistic data flow
 - Inject randomly using net list of all reg (SEU) & wire (SET) in the designs
 - Inject at 40+ MHz, as fast as possible while avoiding explicit double-SEEs
 - ~1 billion times faster than expected at HL-LHC
 - SETs applied for 1 ns, longer than physically expected & correctable by deglitchers
 - 5 ns width also checked, total error rates agree within factor of 2
- Statistics target of ~100 SEEs per reg (~42k) & wire (~250k) quickly exceeded via daily CI runs

- Performed on all 3 ASICs, following will focus on HCC in module-level simulations
- SEE simulations inject logic flips during realistic data flow
 - Inject randomly using net list of all reg (SEU) & wire (SET) in the designs
 - Inject at 40+ MHz, as fast as possible while avoiding explicit double-SEEs
 - ~1 billion times faster than expected at HL-LHC
 - SETs applied for 1 ns, longer than physically expected & correctable by deglitchers
 - 5 ns width also checked, total error rates agree within factor of 2
- Statistics target of ~100 SEEs per reg (~42k) & wire (~250k) quickly exceeded via daily CI runs
- If data error observed, stop SEE injection & attempt escalating series of recoveries
 - Automatic recovery: No further errors within next 10 triggers
 - Commonly caused by temporary corruption of data itself (non-triplicated)
 - Logic, Register, & Hard resets set increasing amount of logic to power-on state

Example analysis of errors

- Automatically detect triplication errors by directly checking recovery of affected logic
 - Caught logic not refreshed after SEE, would have allowed SEEs to accumulate over time
- At high SEE rate difficult to associate error with single SEE (10+ μ s delay)
 - Statistical analysis performed of nearby SEEs for all errors
 - Caught issues such as missing deglitchers on critical reset lines
- Result: enhanced radiation protections & insight into realistic operation + reset program

Comprehensive SEE results

- Triplicated logic (92 million SEEs simulated): only 28 instances of one-off physics data corruption
 - "double SEEs" individual SEEs propagate for short time before triplication corrects
 - Not expected @ HL-LHC (much slower SEE rate than simulation)

Comprehensive SEE results

- Triplicated logic (92 million SEEs simulated): only 28 instances of one-off physics data corruption
 - "double SEEs" individual SEEs propagate for short time before triplication corrects
 - Not expected @ HL-LHC (much slower SEE rate than simulation)
- Non-triplicated logic (25 million SEEs simulated):
 - 0.3% caused one-off physics data corruption = Ø(1) error a day per HCC at HL-LHC
 - 10 orders-of-magnitude below electronic noise
 - Resets performed for 0.01% of SEEs = $\mathcal{O}(1)$ error every 2 weeks per HCC at HL-LHC
 - Conservative upper bound, e.g. caused by accumulation of uncorrected SEEs (rare @ HL-LHC rates)
 - Errors are obvious, quick to identify & reset
 - All sources of hard resets were identified and corrected → no hard resets necessary

Comprehensive SEE results

- Triplicated logic (92 million SEEs simulated): only 28 instances of one-off physics data corruption
 - "double SEEs" individual SEEs propagate for short time before triplication corrects
 - Not expected @ HL-LHC (much slower SEE rate than simulation)
- Non-triplicated logic (25 million SEEs simulated):
 - 0.3% caused *one-off* physics data corruption = $\mathcal{O}(1)$ error a day per HCC at HL-LHC
 - 10 orders-of-magnitude below electronic noise
 - Resets performed for 0.01% of SEEs = $\mathcal{O}(1)$ error every 2 weeks per HCC at HL-LHC
 - Conservative upper bound, e.g. caused by accumulation of uncorrected SEEs (rare @ HL-LHC rates)
 - Errors are obvious, quick to identify & reset
 - All sources of hard resets were identified and corrected → no hard resets necessary
- Results recently confirmed at TRIUMF & Louvain testbeams, see dedicated talks
 - Collaboration of engineers & physicists critical for identifying real deficiencies & red herrings

Irradiation Testing
Andie Wall, Wed @ 14:20

Functionality & Radiation Tolerance
Luis Gutierrez Zagazeta, Thur @ 16:40

Conclusion

- Simulation of 3 ASICs and module-level interactions, streamlined by cocotb adoption
- SEE mitigation essential, benefits from shared community tools & best-practices
 - Novel, sophisticated simulation of radiation effects strengthened hardness of final ASICs designs

Conclusion

- Simulation of 3 ASICs and module-level interactions, streamlined by cocotb adoption
- SEE mitigation essential, benefits from shared community tools & best-practices
 - Novel, sophisticated simulation of radiation effects strengthened hardness of final ASICs designs
 - Experience gained w/ realistic operation informed successful functional, QA, & radiation testing

Radiation Tests

System Tests

Conclusion

Radiation Tests

- Simulation of 3 ASICs and module-level interactions, streamlined by cocotb adoption
- SEE mitigation essential, benefits from shared community tools & best-practices
 - Novel, sophisticated simulation of radiation effects strengthened hardness of final ASICs designs
 - Experience gained w/ realistic operation informed successful functional, QA, & radiation testing

Single-chip Tests System Tests

Wafer Probing

I The Probing I

AMAC Testing
Thomas Gosart, Tues @ 16:40

HCC Testing
Bobby McGovern, Thur @ 16:40

System-Wide SEE Testing
Ryan Roberts, Tues @ 16:40

Backup

Off

3 ASICs for ITk Strip detector

- Charged particles activate strips of silicon sensors
- ABC (ATLAS Binary Chip) reads 256 sensors, digitize & compress data into clusters
- HCC (Hybrid Controller Chip) serializes data @ 640 MHz for up to 11 ABCs, transmits commands & buffers trigger requests
- AMAC (Autonomous Monitoring And Control) voltage / current / temperature monitoring w/ automatic system interrupts
- Several design iterations for evolving needs (bandwidth, rad-hard), final "StarV1" versions now approved

Sensors Detector Generalized module behavior Data flow Control flow

AMAC

Exploded view of module components

Tracking & physics improvements

Advanced simulations & measurements

Processing times for 2nd-level triggers Low Priority (L1) & High Priority (R3)

- Performed a rough, order-of-magnitude estimate of SEE rate at HL-LHC for non-triplicated logic
- Make a simplified extrapolation to 1000 SEEs per day for each HCCStar at the HL-LHC, assuming:
 - Observed SEU rate of 40 SEUs per 25 kRad in triplicated registers & logic from TRIUMF HCCStar V0 proton irradiations (figure below)
 - Rate of radiation exposure of 25 kRad per day at the HL-LHC
 - 25x scale factor to non-triplicated logic from rough comparison of register & wire counts in simulation
 - Assume equal probability of SEUs and SETs
- Simulated SEE rate is predicted to be
 ~1 billion times faster than at HL-LHC

Measured SEE rate in triplicated registers & logic during HCCStar v0 Proton Testbeam (18 registers, HPR logic, R3L1/LCB decoders)

