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UKRI-MPWO - Overview and measurement results
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* 1) Pixel Matrix 1: 3 pixel flavours sl = |
with linear transistors only. (20 row Eﬁg B e et
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* 2) Pixel Matrix 2: 3 pixel flavours o - w5
containing 2 ELTs. (20 row x 29 o
columns)
* 3) 2 Bias blocks

* 4) 2 Analogue buffers L

* 5) Voltage regulator

* 6) CMOS and BJT Bandgap
References (BGRs)

* 7) Test structures - Sensor TCT,

sensor |-V, linear/circular
transistors and Si/SiO2 interface.

* The active matrix has been characterised
In terms of ToT, gain and noise

* The BGRs are independent of the active
matrix and have been characterised
seperately

* ToT (charge injection) measurements of
UKRI-MPWO matrix 1 show clear °
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distinction between the 3 flavours of
pixels implemented in the design

* Hitmap with radioactive source (Sr90) ...
shows gain distribution across pixel
maitrix as expected for different pixel =
designs

Injection amplitude = 1000 , pixel number = 10
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MOSFET BGR performance vs simulation

MOSFET BGR VIN vs VOUT

20.35
|5 0.3
. . 0.25 . | d
* BGR designs characterised for output voltage S - :fr:?a"sﬁtrid
with respect to input voltage and temperature. 018
* The output voltage is fixed to 0.35V B
VIN (V)

* Peltier/heater PID temperature controlled

enclosure used to characterise output over the

MOSFET BGR OUTPUT VOLTAGE vs Temperature
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UKRI-MPWO - BGRs and regulator design

* Circuits designed and manufactured in
UKRI-MPWO

* BJT BGR
* Fully CMOS BGR

* Shunt regulator
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* A practical detector requires a reference against which measurements can be made. A
circuit which performs this function is known as a bandgap reference (BGR).

* A practical detector requires a reference against which measurements can be

made.

ambient temperature

* A bandgap reference should provide an output that is stable for changes in
y Input voltage and temperature

* The circuit should be designed such that positive and negative temperature
coefficients cancel each other out providing an output that is independent of

*A practical detector also requires multiple power supply voltages. Providing
these voltages externally requires additional resources (at the module level) In
terms of external circuitry module area and bus tape area. For this reason a
shunt regulator was included in UKRI-MPWO
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BJT BGR performance vs simulation

The output voltage is fixed to 1.2 V
(close to the theoretical 1.22 eV band
gap of silicon at 0 K).

There is a close agreement between
simulation and measurements (<1mV
difference). The output voltage changes
by 3.7mV over the entire temperature
range

The BJT BGR outperforms the
MOSFET BGR in terms of stabllity in
terms of temperature and output voltage
stability

The BJT bandgap may perform worse In
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BJT BANDGAP REFERENCE VOUT vs TEMPERATURE
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Shunt regulator performance vs simulation and summary
14 Shunt Regulator Vout vs Vin Technology Temperature VrtlafIOutput Vref Su pply Power
2 Range voltage Temperature voltage Consumption
) Variation
E 0.8 - simulated
5 o - measured BJT BGR 150 nm -40°Cto 120 1.2V 43.75 ppm/°C 1.3-1.8V 106.36 pW
_ > o4 HVCMOS °C
* There is a close agreement between . from LFoundry
simulation and measurements (<5mV .
difference between simulated output S Y (') D MOSFETBGR 150 nm —40 °C to 120 350mV 96.32 ppm/°C 0.8-1.8V  146.56 uW
voltage and measured values) HVCMOS °C
E 12 Shunt regulator lout Vs Vout from LFou ndry
* The shunt regulator has a variable output ¢ =
voltage and also variable current limit. % 11 - simulated gggll\lJIATOR 150 nm —40 °C to 120 Adjustable Dependant on  Dependant on Dependant on
External resistors allow the regulator > e T+ measured HVCMOS °C which which which
output to be tailored to different é_ ! from LFoundry reference is reference is  reference is
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