

Institute for Information Processing Technologies

SPONSOBED BY THE

Federal Ministry of Education and Research

Evaluation of GBT-FPGA for Timing and Fast Control in the CBM experiment

V. Sidorenko, W.F.J. Müller, W. Zabolotny, I. Fröhlich, D. Emschermann, J. Becker On behalf of CBM collaboration

www.kit.edu

Karlsruhe Institute of Technology

Outline

- Background
- Existing CBM TFC prototype
- Why switch to GBT-FPGA?
- Evaluation
- Summary

Background

3 21.09.2022 V. Sidorenko "Evaluation of GBT-FPGA for Timing and Fast Control in the CBM experiment" for TWEPP 2022

CBM experiment

- Peak R_{int} is 10 MHz for Au+Au
- Fast & radiation hard detectors
- 4D tracking (space, time)

Photo as of May 2022 Source: https://www.gsi.de/forschungbeschleuniger/fair/bau von fair/bilder und videos

Timing and Fast Control

Versatile fast control network

required

5

10

Source: X. Gao, D. Emschermann, J. Lehnert, and W. F. J. Müller, "Throttling Studies for the CBM Self-triggered Readout," presented at the Topical Workshop on Electronics for Particle Physics, Mar. 2020. doi: 10.22323/1.370.0085.

Existing CBM TFC prototype

V. Sidorenko "Evaluation of GBT-FPGA for Timing and Fast Control in the CBM experiment" for TWEPP 2022

Institute for Information Processing Technologies (ITIV)

6 21.09.2022

CBM TFC prototype now

7 21.09.2022

CBM TFC prototype now

8

Why switch to GBT-FPGA?

21.09.2022 V. Sidorenko "Evaluation of GBT-FPGA for Timing and Fast Control in the CBM experiment" for TWEPP 2022

Institute for Information Processing Technologies (ITIV)

9 21

Why switch to GBT-FPGA?

GBT-FPGA core highlights:

- Originally developed at CERN
- Maintained in CBM by Marek Guminski (WUT, Warsaw)
- Latency-optimized flavor with deterministic register-based CDCs
- Forward error correction

Why switch to GBT-FPGA?

11

21.09.2022

Evaluation

1221.09.2022V. Sidorenko "Evaluation of GBT-FPGA for Timing and Fast Control in
the CBM experiment" for TWEPP 2022

Evaluation setup CBM Karlsruhe Institute of Technolog RPC over Ethernet Test control (Python) VISA over Ethernet Server node TDS6154C Oscilloscope Control bus Sender (BNL-712) Wishbone Pattern register detector Optical Receiver (BNL-712) fibre Pattern **GBT-FPGA GBT-FPGA** -Ð detector Measurement speed could be better: collecting 1k samples takes ~70 min ~11 hours for 10 runs Fully automated setup

1321.09.2022V. Sidorenko "Evaluation of GBT-FPGA for Timing and Fast Control in
the CBM experiment" for TWEPP 2022

Evaluation procedure

21.09.2022

14

V. Sidorenko "Evaluation of GBT-FPGA for Timing and Fast Control in the CBM experiment" for TWEPP 2022

Evaluation conditions

- 10 runs, 1000 samples each.
- Direct optical connection from Master to Endpoint.
- Link implementations under test:
 - Existing prototype (no latency optimizations, PLL zero-delay off),
 - Latency-optimized GBT-FPGA (PLL zero-delay on).

368.0

371.6

Evaluation – existing setup

Current TFC prototype (no latency optimizations, PLL zero-delay off):

- Very poor reset-to-reset determinism (> 10 ns variation)
- Latency distributed over up to 1 ns

16

371.4

Link latency, ns

371.5

371.3

40

20

371.2

Evaluation – GBT-FPGA link

Latency distribution: 10 runs by 1k samples, boards are power cycled and reprogrammed between runs

Latency-optimized GBT-FPGA link (PLL zero-delay on):

- Excellent reset-to-reset determinism (< 100 ps variation)</p>
- Improved latency distribution (within 500 ps p-p)

Evaluation – comparison

Latency mode, mean and std values over 10 runs

- Absolute latency improved by ~100 ns
- Reset-to-reset determinism improved by a factor of ~200
- Latency distribution within one run improved by a factor of ~2
- In-run variation is much more pronounced within runs than between resets
 - V. Sidorenko "Evaluation of GBT-FPGA for Timing and Fast Control in the CBM experiment" for TWEPP 2022

Summary

- Usage of GBT-FPGA for data transport:
 - Reduces total link latency by ~100 ns
 - Improves in-run determinism by ~2 times reset-to-reset determinism by a factor of ~200
 - Keeps link latency safely within a ~500 ps range
 - Simplifies gateware design by handling low-level transceiver management
- Automated evaluation setup allows for easy link latency characterization

New challenge: observed in-run link latency variation

Thank you!

V. Sidorenko "Evaluation of GBT-FPGA for Timing and Fast Control in the CBM experiment" for TWEPP 2022