
OVERVIEW
• Modern C++17 Template Library to describe an algorithm as dataflow graph
• The graph forms a deep pipeline on Hardware
• A deep pipelined graph is ideal for real-time data pre-processing. To guarantee this, we require an Initiation Interval (II) of 1
• Using C++17 compile-time features to keep hardware resources within an acceptable limit compared to VHDL implementation

DESIGN REQUIREMENT
• Developing and testing your algorithm within a C++ framework
• Easy use of arbitrary primitive data types (fixed-point, float, int, etc.)
• User defined data types
• Outcome of calculation on FPGA the same as in emulation on CPU
• Initiation interval always II=1 for maximum throughput

Thomas Janson and Udo Kebschull
Infrastruktur und Rechnersysteme in der Informationsverarbeitung (IRI)

Goethe-Universität Frankfurt am Main

Real-time data pre-processing

for FPGA based detector read out

with high-level language HLS C++

RESULTS

Modern C++17 Data Pre-Processing HLS Dataflow Template Library

Take a picture to
see source code for more information
https://github.com/docarat/hls_dataflow_template_library

TWEPP 2022 Topical Workshop on Electronics for Particle Physics
Bergen, Norway, Sep 19-23, 2022

Algorithm Implementation ALM REG MLAB RAM DSP II Latency FMAX
[MHz]

Moving average HLS 32-bit float 73 153 4 0 3 1 14 471.7

Moving average HLS 10-bit int 42 75 1 0 1 1 8 529.1

Moving average VHDL 10-bit int 21 37 0 0 1 1 4 321.54

Triangular smooth HLS 32-bit float 453 816 14 0 6 1 29 465.12

Triangular smooth HLS 10-bit int 81 168 1 0 0 1 6 535.33

Triangular smooth VHDL 10-bit int 54 96 0 0 0 1 4 356.76

Peak finder HLS 32-bit float 536 1147 12 1 7 1 34 465.12

Peak finder HLS 10-bit int 124 302 1 0 0 1 9 537.92

Peak finder VHDL 10-bit int 62 119 0 0 0 1 6 349.04

DISCUSSION
• The results show resource usage, initiation interval, and latency for simple components
• Comparison with VHDL implementation

• ALMs are the limiting resources.
• We need about two times more resources (ALMs) than VHDL counterparts
• Resource overhead mostly from component (interface) control logic (start, busy, done, and stall)
• We use the default interface called hls_avalon_streaming_component

OUTLOOK and NEXT STEPS
• Tests with larger complex designs to see how resource usage and usability scales
• Implementation of graph balancing
• Optimization of component interface

compiled with Intel HLS Pro 20.4, Arria10.

Taken from Intel HLS Reference Manual

ELEMENTS of an DATAFLOW GRAPH
• Variables are static stream buffers

(HLSVar). These are the arcs of the
dataflow graph and can hold more than
one data item.

• Data items are tokens:
• Token consists of the data value of its

type and a valid bit.
• Assignment shifts Token into stream on

left side of assignment only when Token
on right side is valid.

• Reading from stream always from
offset(0).

• Arithmetic compute nodes are circles.
• Offset Operator (diamond) picks data

items out of stream buffers at given
offset position.

• Each component invocation moves data
items one position further through
stream buffers.

EXAMPLE SIMPLE PEAK FINDER ALGORITHM
• 10-bit ADC continuous input stream
• Detection of a gaussian noisy input pulse
• Pulse width is 10 samples
• Noise-level is 5-bit ADC values
• First stage is a triangular smooth filter
• Second stage computes the derivative

• The result can be used to determine the
pulse position

• The zero crossing is the pule position as
shown in the plot below (1st derivative)

DATAFLOW GRAPH SIMPLE PEAK FINDER

