TWEPP 2022 Topical Workshop on Electronics for Particle Physics

Contribution ID: 168 Type: Poster

Modern C++17 Data Pre-Processing HLS Dataflow
Template Library

Tuesday 20 September 2022 16:40 (20 minutes)

Developing and implementing algorithms for detector read-out using FPGAs is traditionally done by using
a hardware description language like VHDL, Verilog, or System Verilog. In the proposed approach here, we
discuss an alternative way using higher level languages like the Intel HLS Compiler. Intel HLS supports C++17
standard and is ideal to apply methods from Modern C++ to implement complex algorithms more easily. In this
work we have developed a dataflow template library. This enables a shorter development time for increasingly
complex algorithm requirements, which is also important for next generation experiments in the future.

Summary (500 words)

Data pre-processing with FPGAs is common practice for detector read-out in high energy physics. For the
ALICE experiment in run three, we have the common read-out FPGA card based on an Intel Arria 10 FPGA
called Common Readout Unit (CRU), which is mostly responsible to manage time frame building correctly and
to reduce the huge amount of read-out data, e.g., with zero suppression and other algorithms. Traditionally,
in this framework, the read-out firmware is developed using a Hardware Description Language (HDL). In
the ALICE run three, we have a versatile common firmware design mostly designed in VHDL. The design
is common for all detectors and is responsible for interface handling. Detector specific algorithms can be
implemented as part of the firmware design as so-called user logic, which is mostly an entity written in VHDL,
but could also be an IP written in HLS or other tools. That enables the option to implement an algorithm also
in a high-level language like Intel HLS. For this reason, we have developed an Intel HLS Dataflow Template
Library. The Intel HLS compiler is a modern C++ compiler which support many features up to the standard
C++17. Thereby, programming at compile time is the most important feature, for which it turns out that
it enables resource-saving implementations. However, the implementation of an algorithm written in C++
targeting an FPGA has its own peculiarities which come from the fact that the target hardware is completely
different compared to a CPU. Intel HLS generates from a function labelled as component an IP, which can
be then instantiated into an FPGA design, e.g., as part of the user-logic for the CRU. The corresponding RTL
module has interfaces to allow the overall system to interact with the HLS component. For example, there are
start and done signals. A function call issues the start signal for one clock cycle, and some latency, means some
clock cycle later, the done signal indicates that the function returns with a valid result on its return output
port. In addition, a component function is pipelined by default, which means you can call the function again
one clock cycle later before the previous call returns. This behaviour is used to build a dataflow template
library. With this library, we describe our algorithm as a deep pipelined dataflow graph. In this picture, a
variable becomes a static data stream buffer representing an arc of the dataflow graph, the nodes are arithmetic
operators, and other operators to orchestrate the streaming data through the pipelines. The results show that
all designs always get an initiation result of one and the maximum throughput. Although the latency depends
on how the graph is implemented and keeps in response to the programmer. The resource consumption
keeps acceptable low due the fact that we use compile-time programming as shown. With this methodology
an algorithm can easily implemented and tested especially for the growing design requirements for next
generation experiments.



Primary authors: JANSON, Thomas (Goethe University Frankfurt (DE)); KEBSCHULL, Udo Wolfgang (Goethe
University Frankfurt (DE))

Presenter: JANSON, Thomas (Goethe University Frankfurt (DE))

Session Classification: Tuesday posters session

Track Classification: Programmable Logic, Design Tools and Methods



