

The CBM-TRD Cluster Finder

David Schledt, Christoph Blume and Udo Kebschull Goethe-Universität Frankfurt am Main

The Compressed Baryonic Matter Experiment

- Explore phase diagram at high net-baryon densities
- Focus on rare particles as probes
- Requires unprecedented statistics
- 4D online event selection to limit data volume
- FPGA preprocessing to aid computational load

- CBM-TRD consists of 4 layers
- Channel density increasing towards center
- 84,432 channels per layer, 329,728 channels total
- One of the biggest data producers
- Great candidate for preprocessing in the FPGA

TRD Readout ASIC

- Oscilloscope-like sampling
- Up to 32 ADC samples per trigger message
- Marked with timestamp, channel ID, and a trigger type
- 16 channels per output link, output sorted in time

- Features configurable forced neighbor trigger logic
- Allows read out of adjacent pads without lowering the threshold into the noise
- Trigger type 1: fulfilled trigger logic Trigger type 2: forced neighbor trigger

Data Preparation

• Xilinx Kintex Ultrascale readout FPGA (XCKU115)

- Front-end ASICs aggregated with GBTx
- Data preprocessing developed with Vitis HLS
- Raw data from 3 GBTx (42 elinks) is merged and sorted in time

- Features of raw message frames are extracted in message decoder
- Baseline correction
- Maximum ADC value is extracted
- More precise signal time is reconstructed
- Pile-up is detected and removed for a potential pile up reconstruction

Cluster Finder

- Stream is sorted according to pad configuration
- Sorting is done per detector row
- Each pad has 3 cells in a BRAM
- message stream sorted by pad aggregate sum of maxADC cluster position calculate weights center of gravity
- Clusters are aggregated using the hit type information Cluster position calculation is shared
 - between rows Simple center of gravity calculation
- The cluster finder is fully pipelined with an initiation interval of 1 and operates at a frequency of 200 MHz
- The development with HLS significantly simplifies the implementation of fully pipelined algorithms
- Messages which share a timestamp are written into the same relative cell
- If a new timestamp is detected the data is marked as ready to be read and cell writing index is increased
- Reading index increased after all cells were read
- Each cluster finder instance processes 6-8 rows depending on the readout chamber