Lessons learnt from the first vertical slice of the CMS Outer Tracker

Imperial College London

Giacomo Fedi

on behalf of the CMS collaboration and Serenity Consortium

TWEPP 2022 - Bergen - Norway 19-23.09.2022

22 September 22

Overall Picture (2028)

Planned adoption of Serenity board in CMS Phase-2 Upgrade: Tracker, HGCAL, MTD (timing), RPC (muon), L1 Trigger, and possibly BRIL

Serenity 1.2 (latest prototype)

FPGA Daughter Card VU13P, VU9P, VU7P, KU15P

Samtec interposer

Optics
Back-End & Front-End

COM Express Mini Module Type10
Intel® 11th Gen Core Processors
8 or 16GB LPDDR4
NVMe SSD, PCle Gen-4
USB 4

Open IPMC Module
New development
based on modern
micro-controller

Serenity board [TWEPP-18]

- Two main prototypes developed: v1.1 and v1.2
- 12 boards produced, in used for subsystem development and for optoelectronic testing
- HW modification since LTMs (DC/DC converters) require very low ESR capacitors (or compensation) → a number of capacitors were changed

Firmware/Software frameworks

EMP Framework - Application management

- Configurable implementation of infrastructure FW & SW that can be re-used for a wide range of applications
- Clean separation of algorithm from well-tested infrastructure
- Infrastructure already present:
 - MGT links
 - SLINK interface
 - TCDS2 interface
 - Rx/Tx Buffers
 - IPBus environment (Eth or PCIe)
 - Early DAQ interface

Rx Buffers Algorithms Algorithms Algorithms Clk & 40 Mhz & TTC L1A-BGo to AMC13 Ctrls ipBus/PCle

Smash - Board management

- Software/Firmware tool that permits an easy and flexible configuration of the board
- Based on pluggable modules
 - Signals can be re-routed on the fly (I2C, IPBus, GPIO, JTAG, etc.)
- Board physical config described in SMASH script
- Powerful tool
 - E.g. VU7P firmware FPGA loading time: ~8s

[A.Rose]

OpenIPMC

18.3 mm height allows to fit in ATCA crate

using a vertical DIMM slot

power switch

(TITPS2115ADRBR

IPMB I2C

(Linear LTC4300-1)

NAND Flash

- OpenIPMC is an architecture-independent, free and open-source Intelligent Platform Management Controller (IPMC) software for ATCA boards [project]
- IPMC mezzanine [TWEPP-21] communicates with the shelf manager and deals with the very low level controls of the board (e.g. power on/off, temperature monitoring, etc.)
- Based on widely-supported FreeRTOS operating system and Linux-based open toolchain
- In Serenity, OpenIPMC is used in a LAPP-pin compatible DIMM called OpenIPMC-HW mezzanine
- OpenIPMC-HW mezzanine is an open-source hardware
 - Based on STMicroelectronics STM32H745 microcontroller
 - Cheap < \$100

Serenity implementation

- FPGA temp protection
- Temperature sensor monitoring

Available features

- PICMG-compliant IPMI functions
- Telnet/Serial console
- DHCP
- Project modularisation (board customisation)
- Remote FW upload/update (HPM.1)
- Xilinx XVC protocol (remote FW uploading)
- Currently testing on a multi-board environment

Under development

• FLASH file system for configuration data

JEDEC MO-244 connector

Building 186 Tracker test stand

CERN Building 186

- Tracker integration ongoing in CERN building 186 (TIF)
- Test stand for most of Serenity system integration (so far)
 - Board-to-board link testing, DTH integration (TCDS/SLINK)
 - Thermal/Power studies under full load
 - Infrastructure firmware/software testing
 - DTC FE firmware testing -> full project integration

Test stand

- ATCA board arrangement changes depending on test requirements
- Available boards
 - 2 Apollo ATCA boards
 - 2 Serenity v1.1 with 2xKU15P per board
 - 1 Serenity v1.2 with a KU15P and a VU13P
 - 1 DTH p1v2
 - 1 Emerson F125 switch

Rack A16 in building 186 (Couple of months ago)

Thermal measurements

Serenity thermal measurements

Motivations

- For LHC Phase2 most likely use VU13P FPGAs
- Power consumption can reach 200W
 - Need 10-year lifetime for FPGAs and optics (<100C FPGA, <50C FF Optics)
 - Possible cooling issues (especially with 2 FPGA per board)
- Phase 2 cavern racks will be limited to 10kW max power
 - CMS planning ~4kW for ATCA-shelf electronics

Board cooling tests

- Studied using a Serenity board (2xKU15P and a single VU13P) in a Schroff-LHC ATCA shelf
- Extrapolations shows we can deal with 200W with a single VU13P board but we should limit to 120W/ FPGA in case of 2 FPGA/board
 - Promising solution under study: vapour chamber heat sinks seem promising
- In CMS the rack power limit might limit the FPGA power consumption (e.g. <150W per FPGA in case of a shelf housing 10 boards)
- **Learned lesson**: removing the **interposer** improves the cooling (heat sink height and PCB thermal resistance gain)

Rack thermal measurements

Rack cooling

- Measured the overall rack cooling performance in the racks at building 186 at CERN
- Shelf fan speed kept to 10/15 to optimise power consumption 500W/shelf
- Current chilling system cannot provide enough water flow to cool down the rack air loop properly when the shelves @ maximum power (10kW)
- Investigations are ongoing to improve the chilling system in our system and check if a similar issue is present in the CMS cavern

Optics testing

12 channel @25 Gb/s FireFly

Motivation

- Serenity board is designed for 4Ch and 12Ch Firefly transceivers
- Provide optical links at **low BER** compared to commercial links (i.e. 10⁻¹² vs 10⁻⁵)
- 4Ch parts use a bi-dir socket operating up to 28 Gb/s
- 12Ch socket is uni-dir, which is more suited to our applications, but existing parts only operate up to 16 Gb/s
- 12Ch connector also used for Versatile Link+ (LpGBT)
- Many CMS sub-detectors would prefer a 12Ch part, but operating at 25 Gb/s
- Samtec have developed this part over the couple of years
- We have received alpha and beta parts for evaluation

12(Rx/Tx) @25 Gb/s FireFly beta testing in Serenity

- 12 Rx-Tx pairs of 12 channel 25 Gb/s parts were received
- Results from 8 pairs presented here with remaining 4 under test by CERN optics group
- Total of 96 channels tested

CDR = Clock Data Recovery

Tx Electrical

- Tests with Alpha parts suggested issues in the TX electrical domain (FPGA → FF)
 - Can not easily access the Tx electric signal
 - IBERT parameter-scan script to investigate the electrical performance
- Parameter scans show a good parameter stability (yellow area)

Legend

- Two parameters per axis (four in total)
- Each bin corresponds to different settings
- Number/colour of the bin represents the number of links without errors
- Each pink square in a bin represents which link is giving errors

Tx Optical

Eye diagrams of a Tx FF 12Ch @ 25 Gbps

Eye diagram, OMA, and Extinction Ratio

- Optical Modulation Amplitude (OMA) and Extinction Ratio meet specification
- Optical eye diagrams are clean (both PRBS7 & PRBS31)

Issues

- One Tx channel failed (corrupted optical eye)
- Failure not seen by Samtec
- Cause remains unknown, but could be different power sequence or insufficient anti-static precautions
- Keenly awaiting results from Samtec reliability tests

Extinction Ratio

Min by specs Ext. Ratio min 3.5 3.5 3.0 2.5 0 1 2 3 4 5 6 7 8 9 10 11 Channel

Optical Modulation Amplitude

Rx Optical

- Measure Rx sensitivity to attenuation of optical signal using an optical attenuator
- All links were connected in a fibre loopback (except the link under test) to include cross-talk
- BER vs attenuation consistent within all the working channels
- BER vs Rx OMA (corrected for Tx OMA and attenuator offsets) is within spec (<-6dBm) at BER<10⁻¹² Calibration step

BER v Attenuation Serenity

BER vs Rx OMA

Rx Electrical

Bathtub plots

- BER vs sampling time-shift
- BER extrapolated via function fit
- BER extrapolated to 10⁻¹² **good for all the channels** (>30% opening) Issue
- Just one channel in a device couldn't perform well because of a CDR problem (not seen by an independent group)

Tracker vertical slice integration

Tracker vertical slice integration

Tracker Phase 2 Goal

Integration made with **current prototype hardware**, thus before moving to pre-production

- Module pre-production begins in early 2023
- BE board pre-production begins in late 2023
- Aim to to assemble larger scale slice tests in 2024

Current progress

2S Front End module testing

FE - BE(DTC) on test beam

DTC - TFP(Apollo board)

TFP(Apollo) - L1T

Vertical slice: test beam

Test beam @M2 muon beam @CERN

- First slice test for tracker (11/2021) made in conjunction with MuonE experiment
- 4 2S Tracker front end modules interfaced with VTRx+
- 1 Back end serenity with interface and router FW
- 40MHz readout of stubs over lpGBT → 30 TB data sent via 10G eth to a PC
- Stable for many hours
 Early DTC firmware running on Serenity
 Learning how to synchronise FE data under realistic conditions
- Necessary for track finding
- Understanding impact on system latency

Test stand@M2 CERN

Correlation within two modules

Next Serenity

Pre-production Serenity

- Design of a two-flavour board: S (single FPGA) and D (double FPGA)
 - Benefit from a modular design
 - **Zynq SoM**, targeting Kria devices
 - No interposer → less flexibility, but cheaper, simpler and easier to cool down
 - TCDS2 backplane signal correctly managed
 - Increased number of layers (16 → 18)
- Electrical design has been finished and reviewed
- Expected to have first boards mid-2023 (10 boards)
 - High uncertainty due to component shortage

Conclusions

Optics measurements

- We have tested 8 Firefly Beta parts 12Ch 25 Gb/s
 - Stable operation across many parameter combinations, apart from a link with a CDR issue
 - Tx parts respect the OMA and Extinction Ratio specs
 - Rx parts respect the attenuation specs
 - 95 out of 96 links work fine (issues might be due to our testing procedure)
- Next:
 - Test of inter-optics compatibility (QSFP-DD, FF, Amphenol Leap, Finisar BOA)

Vertical slice integration

- First beam test: all aspects of the chain worked successfully
- All the components of the tracker TDAQ chain have been tested
- Next beam test expected for this month aiming at testing 6 modules

Serenity ATCA board

- During the last years we gathered a wide experience on the board
- Some lessons we learned:
 - Interposer reduces the cooling performance and complicates the board assembly
 - COM Express is easy to use and set up, but it's relatively expensive
 - TCDS2 signal routing is delicate and needs proper handling
 - A power sequence is needed, especially for the Samtec 12Ch 25Gb/s parts

Backup

Serenity thermal measurements

Caveat: curve not directly comparable as the heat sinks have different geometries

Parameter scans

CDR Rx Issue

Broken LC-LC Adapter

Bathtub

Broken LC-LC Adapter

Optical Modulation Amplitude

Extinction Ratio

BER vs Attenuation (no corrections)

BER vs Rx OMA (corrected)

