CENTRE DE PHYSIQUE DES
PARTICULES DE MARSEILLE

CPPM 65nm CIS technology by designing a Ring Oscillator B

Aix:-Marseille

Digital cells radiation hardness study of TPSCo ("""

Authors: M. Barbero, P. Barrillon*, D. Fougeron, A. Habib, P. Pangaud. * barrillon@cppm.in2p3.fr

—Introduction

The CPPM group has long been designing and testing
HV-CMOS blocks to complete monolithic chips in

various technologies (TJ180, LF150, AMS) in the
framework of several collaborations. In 2020, we
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Fig7. Left: global view of the irradiation setup. Right: installation inside of the X-ray machine.

Two chips (1 and 2) have been irradiated, at ambient temperature with an X-
ray machine, up to 830 and 520 Mrad respectively (20% attenuation can
occur due to a 3um thick stack-up of copper on the top side). The dose rate
delivered was 20 kRad/mn (calibration performed with an AXUVH5 photo-
diode + 150 um thick Al filter before each campaign). During the exposure
time, the ring oscillators from the functional bank were kept oscillating while
the ones from the static bank were not. Regular measurements of the
frequencies, with both banks put in oscillating mode, were performed along
the irradiation periods.

During the first period (spring) the temperature was stable around 25°C in
the chamber, while during the second one (summer) we suffered from warm
temperature that affected the X-ray tube cooling system and we had to stop
at a lower TID (520 Mrad). Nevertheless, both chips responded similarly to
the irradiation and exhibited a decrease (up to 25%) of the frequencies. We
observed differences between ring oscillators, depending on the type,
length, and threshold of the transistors of the base cells.
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Fig9. Relative frequency difference (before-after irradiation)
for each ring oscillator (chipl, bank S, chip2 banks F & S).

It is worth noticing that the functional bank of the chipl was incorrectly configured during the
irradiation and therefore was also kept static. This resulted in measurements similar for the two
banks of this chip. For chip2, the two banks were configured properly and differences (few %)
between static and functional banks were observed.

Fig8. Frequency for each TID and each RO (chip1, bank S).
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Fig10. Relative frequency vs TID (log scale) for all ring oscillators, both chips and banks.

Annealing
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Figl1. Relative frequency vs TID and annealing time for all ring oscillators and both banks (chip 2).

Conclusions

The study of radiation hardness of TPSCo 65nm (TJ65) technology based on ring oscillators measurements showed relevant results. The frequencies decreased for all types of ring
oscillators exhibiting different impact of the TID (from 12 to 25% at 830 Mrad). This limited degradation opens perspective for the usage of digital cells of this technology in high
radiation environments. The temperature has an impact that can be quantified and corrected. Finally, the annealing period at high temperature (80°C) can be interpreted like a
reverse annealing behavior and must be considered for the future developments in this technology.



