Irradiation testing of ASICs for the ATLAS HL-LHC Upgrade

Andie Wall

University of Pennsylvania

On behalf of ATLAS ITk

Topical Workshop on Electronics for Particle Physics

September 21, 2022

Outline

- 1. Background
 - a. ATLAS and the Inner Tracker
 - b. Overview of single event effects
- 2. Heavy ion irradiation program and results
 - a. Experimental setup
 - b. Results
 - c. Cross-section calculations and the Weibull curve
 - d. Analysis and HL-LHC projections
- 3. Proton irradiation program and results
 - a. Experimental setup
 - b. Cross-section calculations and HL-LHC projections

ATLAS and the Inner Tracker

- For HL upgrade to LHC, ATLAS's Inner Detector will be replaced with all silicon Inner Tracker (ITk)
 - More radiation hard & has faster readout
 - Consists of two systems: strips & pixels
- ITk strips contain 3 kinds of ASICs:

ABCStar, HCCStarv1, AMACStar

- ABCStar: ATLAS Binary Chip
 - Front end analog detector readout
 - Irradiation tests have <u>already been performed</u>
- HCCStar: Hybrid Control Chip
 - Sends clock & control signals to ABCStar
- AMACStar: Autonomous Monitoring and Control Chip
 - Monitors & controls voltage, current, temperature
- ASICs will reside <u>between 385-762 mm with worst case endcap</u> <u>maximum dose of 50.4 MRad</u>
 - Need to make sure ASICs will operate successfully in high-radiation environment

Image credit: Brookhaven National Laboratory

SEE background

- High energy particles can ionize materials they pass through
 - Our ASICs are sensitive to 2 kinds of Single Event Effects (SEEs)
 - Single event upset (SEU): change of state caused by ionizing particle
 - Affects flip flops
 - In our case, logic states flip in configuration registers or in data as it is being processed
 - Single event transient (SET): signal inversion caused by voltage pulse
 - Affects logic gates
- To make sure ASICs are protected from SEEs, we use test beams at national laboratories
 - ASICs are placed in beam & performance is monitored
 - Continuous loop counts how many times SEEs occur & are corrected
 - Expect to see SEEs occurring & being corrected during beam
 - Beam tests don't differentiate between SEU & SET but <u>simulation shows ASIC designs</u> protect against both

SEE background continued

Triplication & majority voting

- Nearly all logic in both chips is triplicated
 - Triplication of flip flops protects against SEUs
 - 3 data copies compare & save majority value
 - Triplication of logic protects against SETs
 - Accomplished by also triplicating voters
 - Deglitchers on wires offer additional protection
 - HCC has some memories related to the hit/cluster data that are not triplicated
- Highly unlikely to have 2 SEUs flip same bit
 - Would completely flip the triplicated logic states
 - Not expected to occur at HL-LHC with any frequency
- Use test beam results to confirm that ASICs have sufficient triplication

Triplicated data with single voter

Triplicated data & triplicated voters

Images from Wikipedia

Experimental setup for heavy ion irradiation

- Heavy ion irradiation testing at UCLouvain
 - $\circ~$ Average fluence of 5.5E7 ions/cm 2
- HCC, AMAC, BETSEE placed on cold plate in vacuum with flanges connecting to outside electronics
 - BETSEE is Board for Evaluating Triple Chip SEEs & results can be found here
- Continuous loop checks for flipped bits that have been corrected & records them
- Linear energy transfer (LET): energy per unit length lost by particle passing through material
 - o lons with higher LET cause higher rate of bit flips
 - Fitting data from ions of various LETs helps predict performance in other environments
- Used 8 ions for HCC & AMAC:
 - $({}^{13}C^{4+}, \ {}^{22}Ne^{7+}, \ {}^{27}Al^{8+}, \ {}^{36}Ar^{11+}, \ {}^{53}Cr^{16+}, \ {}^{84}Kr^{25+}, \ {}^{103}Rh^{31+}, \ {}^{124}Xe^{35+})$
 - $\circ~$ LETs ranging from 1.4 to 62.5 MeV•cm²/mg
 - Can extrapolate from fit to environment's expected LET to get projected cross-section, multiply by total hadron flux to get expected SEE rate

Andie Wall

Heavy ion irradiation results

- HCC & AMAC performed extremely well operationally
 - Saw evidence of single SEEs occurring in triplicated logic & being corrected
 - \circ No double SEEs occurred
 - Disabling one clock (which disables triplication) showed uncorrected SEEs
 - Confirmed that triplication was working
 - \circ SEEs increased with LET as expected
- HCC & AMAC needed resets for two highest LET ions
 - Rh @ 46.1 & Xe @ 62.5 MeV · cm²/mg

Heavy ion cross-section calculations and Weibull fit

 #SEEs counts corrected bitflips (CBFs) recorded across all configuration registers

 $\sigma = \frac{\# \text{SEEs}}{\text{fluence} \cdot \text{bits monitored}}$

- Weibull fit is commonly used to model observed failures of components
- Can predict SEE rates at HL-LHC by determining 4 parameters:

 σ_0 = saturated cross-section, E₀=threshold energy, W=width of rising portion, s=shape modification

$$\sigma(E) = \sigma_0 \left\{ 1 - \exp\left[\left(\frac{E - E_0}{W} \right)^S \right] \right\}$$

	$\sigma_0\left[rac{cm^2}{\mathrm{ion}} ight]$	$E_0\left[rac{\mathrm{MeV}\cdot\mathrm{cm}^2}{\mathrm{mg}} ight]$	$W\left[\frac{\mathrm{MeV}\cdot\mathrm{cm}^2}{\mathrm{mg}} ight]$	S
AMAC	$(2.5\pm0.4)\cdot10^{-7}$	2.5 ± 0.3	56 ± 19	0.8 ± 0.1
HCC	$(3.3\pm0.6)\cdot10^{-7}$	2.3 ± 0.7	31 ± 13	0.7 ± 0.1

Table 1: Weibull parameters based on Louvain heavy ion data

Andie Wall

Further analysis of heavy ion data

- Corrected bitflips (CBFs) were checked across registers & across time
 - No unexpected behavior observed
 - Corrected bitflips are not problematic thanks to ASIC designs
- Bit flip rate in non-triplicated HCC data expected to be 10 orders of magnitude lower than electronic noise
- Combining Weibull parameters with expectations for various LETs at HL-LHC gives expected XS of CBFs
 - Can then multiply projected cross-section by total hadron flux to get expected CBF rate
 - In HL-LHC lifetime, expect 50 CBFs per HCC bit & 120 CBFs per AMAC bit
- HCC needed register resets for 2 highest LET ions (Rh @ 46.1 & Xe @ 62.5)
 - High LET ions deposit more energy across chip surface & can cause more disruptive issues than single bit flip
 - High LET effects much rarer at HL-LHC, & none expected above Kr @ 32.4 MeV · cm²/mg
- AMAC had communication issues during highest 2 LET ions
 - Solved by hard resets

Proton beam time summary

- TRIUMF Proton Irradiation Facility
 - $\circ~$ Goal to confirm Louvain findings
 - Total fluence ≈8% of HL-LHC lifetime
- Ran 2 HCC, 2 AMAC, 2 <u>BETSEE</u> setups simultaneously
 - Attached boards to mounting apparatus & aligned chips with beam
 - Boards attached to electronics in bunker via long cables
- HCC & AMAC performed well overall
- HCC needed some register resets & AMAC setup needed to be power cycled
 - $\circ~$ Similar to issue seen at Louvain & in testbench
 - Not issues with functionality

SEUs over time and cross-section calculations

 \bullet Used similar method to Louvain but corrected for fluence as needed $$\#\rm SEEs$$

 $\sigma = \frac{\pi}{\text{fluence } \cdot \text{fluence correction factor } \cdot \text{ bits monitored}}$

	Cumulative CBF cross-section
HCC1	$1.5 \cdot 10^{-13}$
HCC2	$2.1 \cdot 10^{-13}$
AMAC1	$2.2\cdot 10^{-13}$
AMAC2	$2.6\cdot10^{-13}$

Table 2: Cumulative CBF cross-sections from proton data

- Average CBF cross-section is 1.78·10⁻¹³ for HCC & 2.39·10⁻¹³ for AMAC
 - Gives lifetime projection of 180 CBFs per HCC bit & 240 CBFs per AMAC bit

Andie Wall

Conclusion

Based on heavy ion data:

- No resets of any kind required for LETs expected at the HL-LHC
 - No hard resets/power cycles required for HCC
 - AMAC experienced communication errors which required hard resets for highest 2 LETs
 - Single SEEs occurred in triplicated logic & were corrected by ASIC designs
- Running without triplication showed uncorrected SEEs
- Data well described by Weibull fit model

Based on proton data:

- HCC required register resets very infrequently & AMAC required power cycles to fix communication
- Louvain results were confirmed
- Both ASICs passed Production Readiness Review

From Louvain & TRIUMF testbeam data, we expect HCCStarV1 and AMACStar to perform acceptably under irradiation at HL-LHC with O(10) correctable bit flips per bit per year

Related talks and posters

Pre-Production Testing of the AMACStar ASIC at Penn for the ATLAS ITk Detector

Thomas Gosart, Tuesday poster session

BETSEE: Testing for System-Wide Effects of Single Event Errors on ITk Strips Modules

Ryan Roberts, Tuesday poster session

Simulated verification of the ASIC functionality and radiation tolerance for the HL-LHC ATLAS ITk Strip Detector

Jeff Dandoy, ASIC track talk, Tuesday at 11:20

Radiation tolerance studies of the HV-Mux GaN FETs for the HL-LHC ATLAS ITk Strip Detector

Luis Felipe Gutierrez Zagazeta, Thursday poster session

Testing of the HCC and AMAC functionality and radiation tolerance for the HL-LHC ATLAS ITk Strip Detector

Luis Felipe Gutierrez Zagazeta, Thursday poster session

Pre-Production Testing of the HCCStar at Penn for the ATLAS ITk Detector

Bobby McGovern, Thursday poster session

Cross section plots with Weibull fit

• Carbon's LET is below threshold energy E₀ for both ASICs

• Did not have significant number of corrected bitflips (<10 in 1.5 hours), subsequently excluded from fit

15

Andie Wall

Louvain cross-sections

lon	LET [MeV•cm²/mg]	AMAC cross-section [cm ² /ions•bits]	HCC cross-section [cm ² /ions•bits]
¹³ C ⁴⁺	1.3	(4.200 ± 1.878) [.] 10 ⁻¹¹	(6.510 ± 3.759) · 10 ⁻¹⁰
²² Ne ⁷⁺	3.3	(2.472 ± 0.037) · 10 ⁻⁸	(1.061 ± 0.048) · 10 ⁻⁸
²⁷ Al ⁸⁺	5.7	(5.387 ± 0.006) · 10 ⁻⁸	(2.127 ± 0.068) · 10 ⁻⁸
³⁶ Ar ¹¹⁺	9.9	(1.012 ± 0.009) · 10 ⁻⁷	(5.684 ± 0.136) · 10 ⁻⁸
⁵³ Cr ¹⁶⁺	16.1	(1.383 ± 0.008) · 10 ⁻⁷	(6.904 ± 0.130) · 10 ⁻⁸
⁸⁴ Kr ²⁵⁺	32.4	(2.006 ± 0.015) · 10 ⁻⁷	(1.128 ± 0.022) · 10 ⁻⁷
¹⁰³ Rh ³¹⁺	46.1	(2.467 ± 0.021) · 10 ⁻⁷	(1.471 ± 0.031) · 10 ⁻⁷
¹²⁴ Xe ³⁵⁺	62.5	(2.646 ± 0.022) · 10 ⁻⁷	(1.62 ± 0.033) · 10 ⁻⁷

Error cross-sections for Louvain "strange" high LET events for HCC

- Highest two LETs (Rh & Xe) have these strange types of error
- The so-called "strange high LET events"
 can be seen here (based on HCC data) to occur at a frequency of ~5-6 orders of magnitude lower than the correctable bit flips
 - For comparison, expect 18 CBFs/year/bit
 for HCC and 24 CBFs/year/bit for AMAC

Louvain SEU accumulation by time for HCC

- Status codes beginning with f are bitflips seen in the SEU registers
- Looked at SEUs vs. time for all ions
 - Linearly increasing in all cases, nothing unexpected observed

Louvain SEU accumulation by register

- 3 registers (OPMode, OPModeC, Cfg1) had ~2x
 So bitflips of all others
 - Some outliers noticeable at high LETs
 - Register 38 for Rh, 11 for Kr

- Noticeable in Al & above
- Could be related to register position on the chip

Andie Wall

Alternate (comparable) calculation of expected rate of corrected bit flips (CBFs) based on Louvain data

• Follow the ABCStar paper calculation

Andie Wall

$$\begin{split} \phi_{\text{hadrons}} &= \mathcal{O}(10^{-3}) \frac{\text{hadrons}}{\text{cm}^2 \cdot \text{pp collisions}} \langle \mu \rangle \cdot \text{rate of BCs} \\ \text{Taking } \langle \mu \rangle &= 200 \text{ and rate of BCs} = 40 \text{ MHz} \\ \phi_{\text{hadrons}} &= \mathcal{O}(10^{-3}) \frac{\text{hadrons}}{\text{cm}^2 \cdot \text{pp collisions}} \cdot 200 \cdot \frac{4 \cdot 10^7 \text{ pp collisions}}{\text{second}} \\ \phi_{\text{hadrons}} &= \mathcal{O}(10^{-3}) \frac{\text{hadrons}}{\text{cm}^2 \cdot \text{pp collisions}} \cdot 200 \cdot \frac{4 \cdot 10^7 \text{ pp collisions}}{\text{second}} \\ \phi_{\text{hadrons}} &= \mathcal{O}(10^7) \frac{\text{hadrons}}{\text{cm}^2 \text{s}} \\ \text{Assuming 4 months/year of continuous running } (\sim 10^7 \text{seconds/year}) : \\ \text{Rate}_{\text{CBF}} &= \mathcal{O}(10^7) \frac{\text{hadrons}}{\text{cm}^2 \text{s}} \cdot \frac{\sigma_{\text{SEU}}}{\text{chip}} \frac{10^7 \text{seconds}}{\text{year}} \\ \text{Rate}_{\text{CBF, AMAC}} &= 10^7 \frac{\text{hadrons}}{\text{cm}^2 \text{s}} \cdot 1.2 \cdot 10^{-13} \frac{\text{cm}^2}{\text{ion}} \frac{10^7 \text{seconds}}{\text{year}} = 12 \frac{\text{CBFs}}{\text{year} \cdot \text{AMAC}} \\ \text{Rate}_{\text{CBF, HCC}} &= 10^7 \frac{\text{hadrons}}{\text{cm}^2 \text{s}} \cdot 5.2 \cdot 10^{-14} \frac{\text{cm}^2}{\text{ion}} \frac{10^7 \text{seconds}}{\text{year}} = 5 \frac{\text{CBFs}}{\text{year} \cdot \text{HCC}} \end{split}$$

Analysis of "strange" high LET events seen by HCC

- High LET ions deposit more energy across chip surface, can cause more disruptive issues than single bit flip
 - However high LET effects much rarer at HL-LHC, & none expected above Kr @ 32.4*
- A few instances of **register resets** needed, mainly for highest 2 LET ions

(Rh @ 46.1 & Xe @ 62.5)

- Error is reproducible in testbench without radiation, likely source for lower LET instances
- $\circ~$ Error is evident from HCC's automatic HPR's (malformed but still at 1 ms rate)
- Register resets & reconfigurations quick to perform [O(ms)]
- 2 transient issues rarely seen & no action required (DoubleSOP & LCBNoise)
 - $\circ~$ May be related to testbench & firmware, not HCC itself
 - $\circ\,$ Errors would not affect operation or data taking
- No hard resets required at all
- L0bitflips discussed in next slide

*Paulo Moreira's AUW IpGBT presentation

**Jeff Dandoy's in-depth analysis slides

Analysis of "strange" high LET events seen by HCC (cont.)

- Size constraints could not triplicate full data path of HCC
 Hard to see in irradiations because data is stored very briefly within HCC's logic - hard to flip bits
- Saw small number of single bit flips in nontriplicated data path
 - Calculated bitflip XS of L0 data based on rough estimation of time data is in memory
 - L0 bitflips are data only (no metadata)
 - $\circ\,$ Good agreement with corrected bit flip cross-section in registers
- Very rough extrapolation for each HCC: 1 bitflip in data (a bad hit) per 10 billion triggers
 - Compare with expected sensor noise of ~2 spurious hits per trigger per HCC

**Jeff Dandoy's in-depth analysis slides

SEU accumulation over time for AMAC at TRIUMF

- Plot is not continuous for AMAC because of test board failures and interruption in beam delivery
- Error with file timestamps, approximations applied to correct the issue

Adjustments necessary

- Needed to realign after fixes were made on TRIUMF side
 - Beam position shifted from what we originally aligned with, so we realigned the chips to maximize fluence
- Priority was realignment of AMAC
 - HCC was slightly off-center due to height constraint & being too active to correct for
- Because beam shape is unknown, we need to correct fluence for x-y displacement
 - Using AMAC's second alignment as "truth", we can determine a fluence correction factor using the relative bitflip rate between HCC & AMAC
 - Correction factors are ¹/₂ for 1st alignment & ¹/₃ for 2nd alignment

Calculation of expected SEU rate at the HL-LHC

- Combining Weibull parameters with expectations for various LETs at HL-LHC gives expected XS of corrected bit flips (CBFs)
 Automatically corrected bitflips cause no operational issues but can be used as guide for comparison with much rarer operational issues
- Can multiply projected SEU cross-section (provided by Federico Faccio) by total hadron flux to get expected rate of SEUs
 - Based on ITk Strips TDR lifetime 1 MeV equivalent neutron fluence for worst case endcap of 8.1 10¹⁴ cm⁻²
 - $\circ\,$ For heavy ions, use safety factor of 5 (recommendation from ATLAS Radiation Effects Task Force)
- For the non-triplicated hit/cluster data path of the HCCStarV1, we predict around 10⁻¹⁰ bit flips in actual data per trigger
 Can compare with 19 good hits per trigger & 2 noise hits per trigger
- Ran for ≈2.7 MRad at TRIUMF
 - Assuming 10 year HL-LHC lifetime: 7.7% of ASIC lifetime (9 months running)
- From Louvain, extrapolation # of register resets needed per HCC as 5 per year
 - Assumes all instances of register resets were irradiation-induced HCC issues (have seen occurrences in testbench) & HL-LHC rate extrapolation is identical for effects turning on at LET > 46.1 (register resets) as for LET > 3.3 (CBFs)
 - $\,\circ\,$ If this occurs at HL-LHC, would be quick to identify & perform corrective action
 - $\circ\,$ Based on TRIUMF extrapolation, expect to need 9 register resets/HCC/year

	Projected HL-LHC lifetime CBFs per HCC bit	Projected HL-LHC lifetime CBFs per AMAC bit
Louvain data	50	120
TRIUMF data	180	240

Table 3: Projected HL-LHC CBF rates

Extrapolating number of errors from TRIUMF to HL-LHC

- ≈2.7 MRad delivered combined for both HCCs during triplicated data taking
 - Equivalent to roughly 7.7% of HCC lifetime (9 months running)
- Need to correct certain error types based on effective time sensitive
- LCBzero issue: 100% effective time sensitivity
 - Happened 7 times (requiring register resets) \Rightarrow 9 expected/year
 - Also saw this with beam off, so could still be testbench related
 - Error is evident from HPR's (malformed but still at 1 ms rate)
 - Takes <1 ms to identify, quick to perform register resets/reconfigurations [O(ms)]
- Readout time: code reads out HCC 30% of total time
 - Brief LCB unlocking: saw 2 times on LCB_HYB \Rightarrow 9 expected/year
 - None seen on LCB_IN
- Triggering rate: operated HCC triggering @ 4.5 kHz overall with ITSDAQ
 - Roughly 0.45% of expected triggering rate
 - Bit flips in returned LP data
 - 1 instance @ 4.5 kHz ⇒ 295 expected/year @ 1MHz
 - Bit flips in outgoing LP on HYB_LP
 - 11 instances @ 4.5 kHz \Rightarrow 3150 expected/year @ 1MHz

