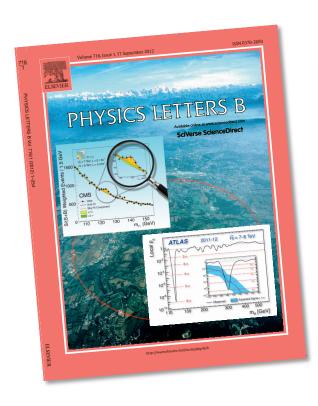


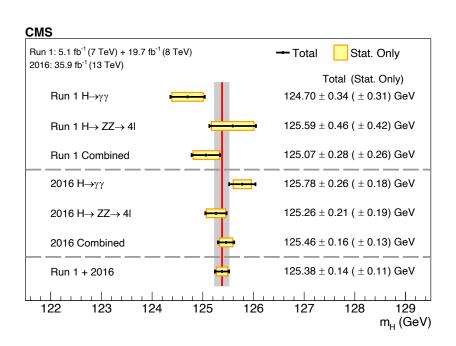
Constraining the Higgs-charm coupling at CMS

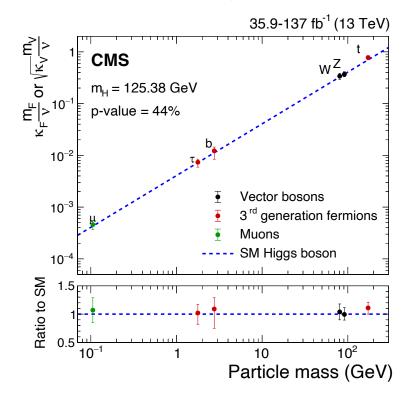
Luca Mastrolorenzo¹ and Huilin Qu² on behalf of the CMS Collaboration


CERN LPCC EP-LHC Seminar I March 2022

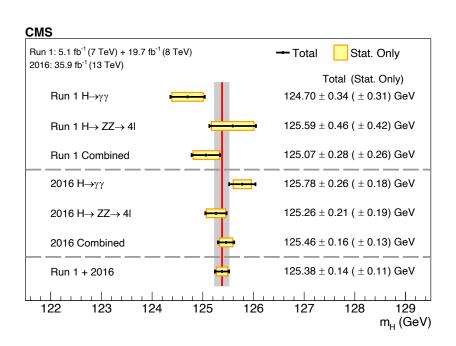
¹ Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University ² CERN (European Organization for Nuclear Research)

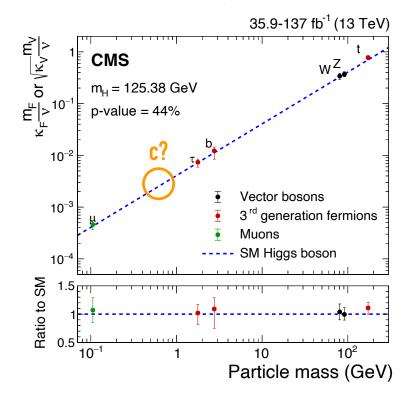
Introduction


☐ Discovery of the Higgs boson in 2012: A new chapter of particle physics



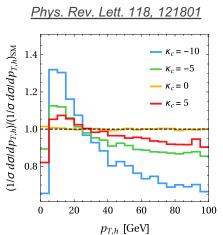
Understanding the Higgs boson


Tremendous progress in our understanding of the Higgs boson in the past ten years



How charming is the Higgs boson?

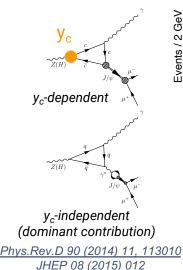
Tremendous progress in our understanding of the Higgs boson in the past ten years



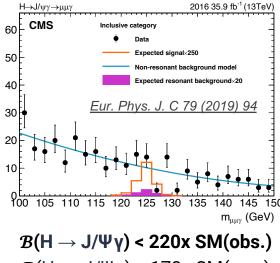
Probing the Higgs-charm coupling

Several methods explored by CMS to probe the Higgs-charm Yukawa coupling (y_c)

Indirect constraint from Higgs kinematics

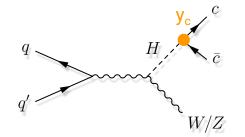


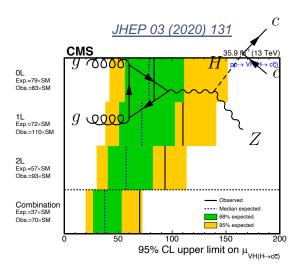
Variation of $p_T(H)$ shape as a function $\kappa_c = y_c/y_c^{SM}$



 $-33 < \kappa_c < 38 \text{ (obs.)}$ $-31 < \kappa_c < 36 \text{ (exp.)}$

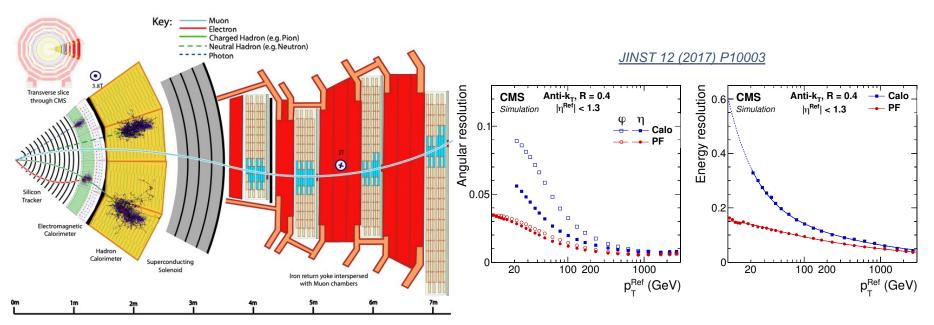
Search for exclusive $H \rightarrow J/\Psi \gamma$ decays

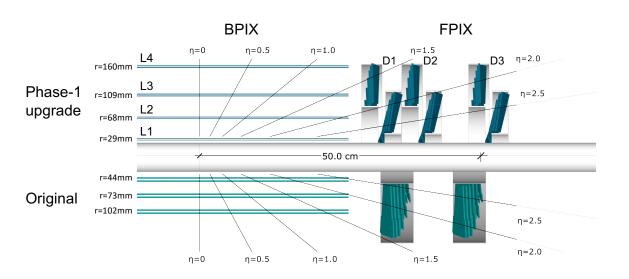

Phys.Rev.D 90 (2014) 11, 113010 JHEP 08 (2015) 012 Phys.Rev.D 95 (2017) 5, 054018 Phys.Rev.D 100 (2019) 5, 054038

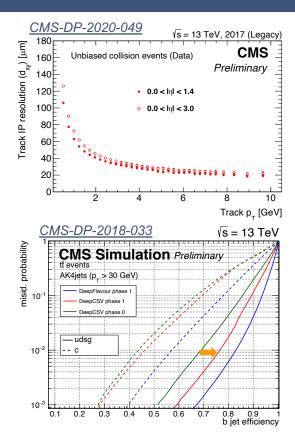


$$\mathcal{B}(H \to J/\Psi \gamma)$$
 < 220x SM(obs.)
 $\mathcal{B}(H \to J/\Psi \gamma)$ < 170x SM(exp.)
Roughly translates to κ_c < 0(100)

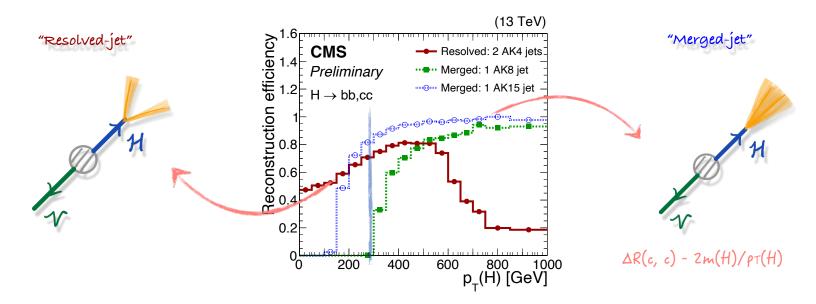
Direct search for H → cc


- \square Search for H \rightarrow cc decays: directly sensitive to y_c, but very challenging
 - small branching fraction (~3%) vs. large backgrounds (999) adron collider)
 - charm quark identification is the key
 - Exploit associated VH production (V = W, Z)
 - three channels: $Z \rightarrow vv$ (0L), $W \rightarrow \ell v$ (1L), $Z \rightarrow \ell \ell$ (2L) $[\ell = e, \mu]$
- Main backgrounds
 - V + jets, single and pair production of top quarks, dibosons
 - VH(H \rightarrow bb): small but largely irreducible
- Baseline event selections
 - (high-p_T) vector boson recoiling against a Higgs boson candidate
 - veto events with high jet multiplicity to suppress tt contribution (0L & 1L)
- ☐ Previous result (36 fb⁻¹): [JHEP 03 (2020) 131]
- □ Today: result with the full Run 2 data set (138 fb⁻¹)


Particle-flow reconstruction

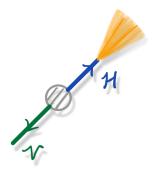

- Particle-flow (PF): powerful approach for jet reconstruction and flavor tagging
 - excellent energy and angular resolutions
 - each particle (PF candidate) contains a rich set of information from multiple sub-detectors inputs to deep-learning

Phase-1 pixel detector upgrade


■ New pixel detector installed during year-end stop 2016/2017

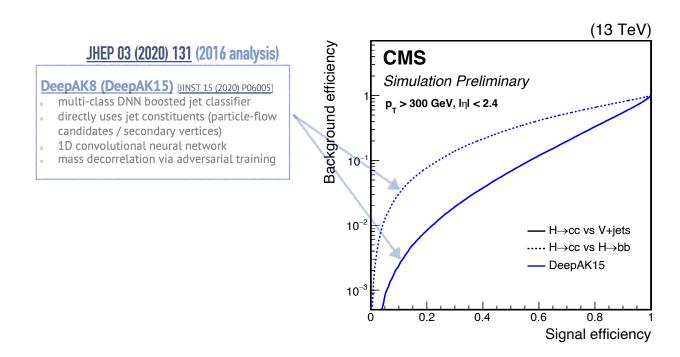
Analysis overview

Two complementary approaches for Higgs boson candidate reconstruction

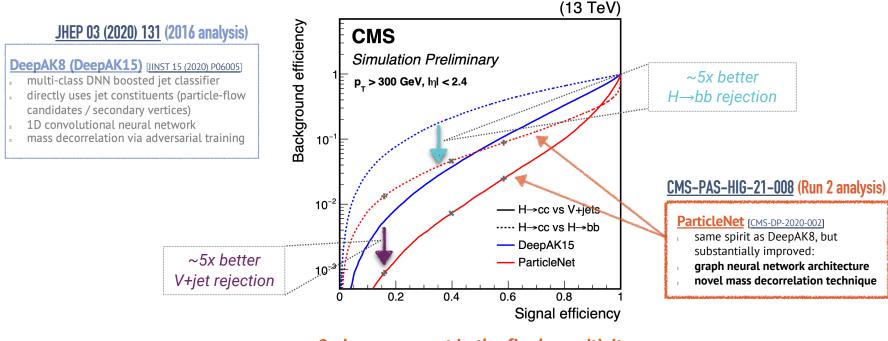

Resolved-jet topology

- reconstructs H → cc decay with two small-R jets (R=0.4, "AK4")
- probes the bulk (>95%) of the signal phase space

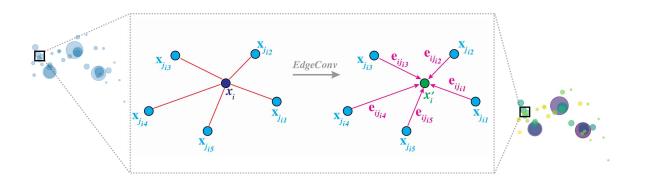
Merged-jet topology

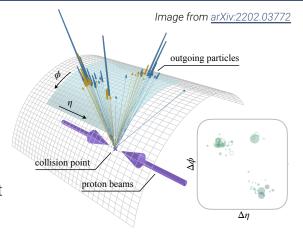

- reconstructs H → cc decay with one large-R jets (R=1.5, "AK15")
- small signal acceptance (<5%) but higher purity</p>
- better exploits the correlation between the two charm quarks

Merged-jet topology


$H \rightarrow cc$ identification

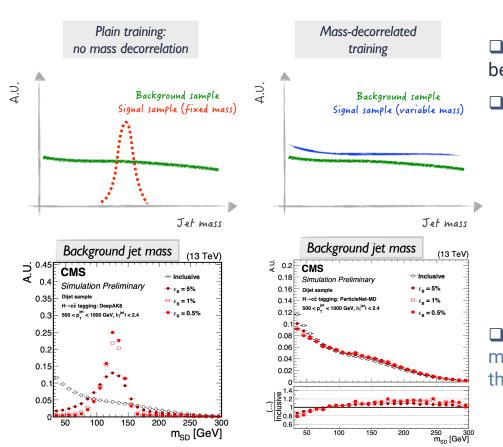
 \square Merged-jet topology: Higgs boson candidate reconstructed via a single large-R jet (p_T > 300 GeV)


$H \rightarrow cc$ identification


- \square Merged-jet topology: Higgs boson candidate reconstructed via a single large-R jet (p_T > 300 GeV)
- \square A major improvement: **ParticleNet** tagger used to identify $H \rightarrow cc$ decay

ParticleNet architecture

- New jet representation: "particle cloud"
 - treating a jet as an unordered set of particles, distributed in the $\eta \varphi$ space
- ☐ ParticleNet [Phys.Rev.D 101 (2020) 5, 056019]
 - graph neural network architecture adapted from DGCNN [arXiv:1801.07829]
 - permutation-invariant architecture leads to significant performance improvement

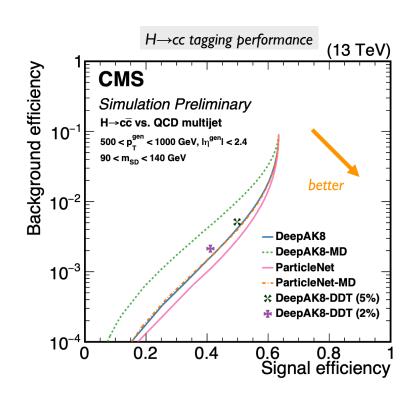

Performance on top quark tagging benchmark
[SciPost Phys. 7, 014 (2019)]

iet reconstruction

collision event

	$1/\varepsilon_b$ at $\varepsilon_s = 30\%$
ResNeXt-50	1147 ± 58
P-CNN	759 ± 24
PFN	888 ± 17
ParticleNet-Lite	1262 ± 49
ParticleNet	1615 ± 93

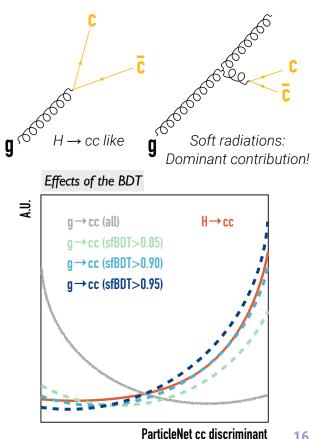
Mass decorrelation



CMS-DP-2020-002

- ☐ "Mass sculpting": background jet mass shape becomes similar to signal after tagger selection
- New approach to prevent mass sculpting
 - using a special signal sample for training
 - hadronic decays of a spin-0 particle X
 - $X \rightarrow bb, X \rightarrow cc, X \rightarrow qq$
 - not a fixed mass, but a flat mass spectrum
 - m(X) ∈ [15, 250] GeV
 - allows to easily reweight both signal and background to a \sim flat 2D distribution in (p_T , mass) for the training
- ☐ Signal and background have the same (~flat) mass spectrum, thus no sculpting will develop in the training

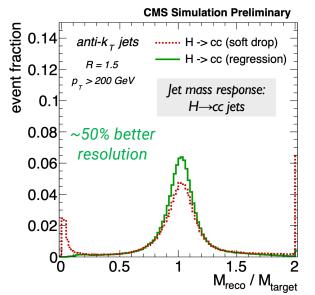
Mass decorrelation (II)

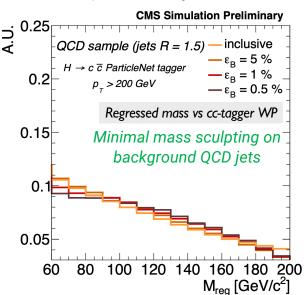


- ☐ "Mass sculpting": background jet mass shape becomes similar to signal after tagger selection
- New approach to prevent mass sculpting
 - using a special signal sample for training
 - hadronic decays of a spin-0 particle X
 - $X \rightarrow bb, X \rightarrow cc, X \rightarrow qq$
 - not a fixed mass, but a flat mass spectrum
 - m(X) ∈ [15, 250] GeV
 - allows to easily reweight both signal and background to a \sim flat 2D distribution in (p_T , mass) for the training
- ☐ Performance loss due to mass decorrelation greatly reduced compared to the previous approach (DeepAK8-MD, based on "adversarial training")

Calibration of the cc-tagger

- Need to measure ParticleNet cc-tagging efficiency in data
 - no pure sample of $H \rightarrow cc$ jets (or even $Z \rightarrow cc$) in data
 - using $g \rightarrow cc$ in QCD multi-jet events as a proxy
- Difficulty: select a phase-space in $g \rightarrow cc$ that resembles $H \rightarrow cc$
 - solution: a **dedicated BDT** developed to distinguish **hard 2-prong splittings** (i.e., high quark contribution to the jet momentum) from **soft cc radiations** (i.e., high gluon contribution to the jet momentum)
 - also allows to adjust the similarity between proxy and signal jets
 - by varying the sfBDT cut treated as a systematic uncertainty
- Perform a fit to the secondary vertex mass shapes in the "passing" and "failing" regions simultaneously to extract the scale factors
 - three templates: cc (+ single c), bb (+ single b), light flavor jets
- Derived cc-tagging scale factors typically 0.9—1.3
 - corresponding uncertainties are 20–30%

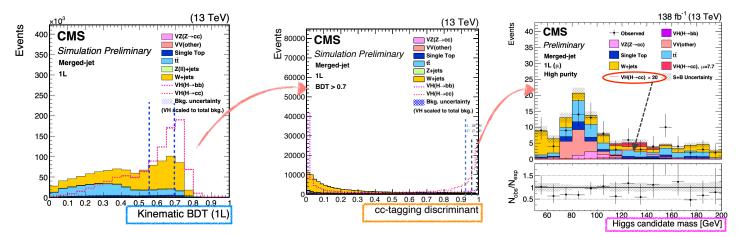



Large-R jet mass regression

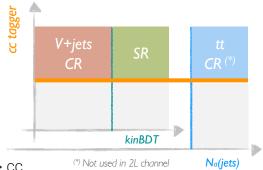
☐ Jet mass: one of the most powerful observable to distinguish signal and backgrounds

CMS DP-2021/017

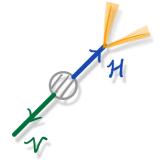
- New ParticleNet-based regression algorithm to improve the large-R jet mass reconstruction
 - training setup similar to the ParticleNet tagger; the regression target:
 - signal (X \rightarrow bb/cc/qq): generated particle mass of X [flat spectrum in 15 250 GeV]
 - background (QCD) jets: soft drop mass of the particle-level jet



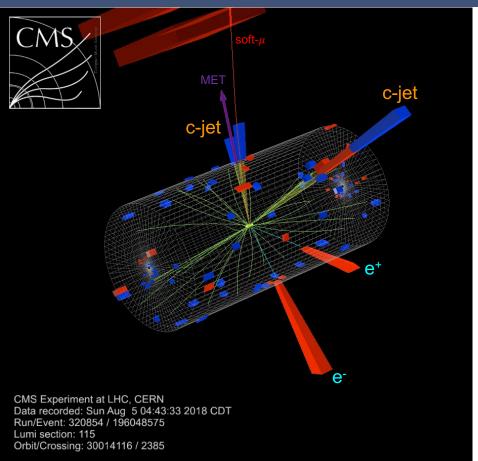
20 – 25% improvement in the final sensitivity


Analysis strategy

- Factorized approach for analysis design
 - event-level kinematic BDT developed in each channel to better suppress main backgrounds (V+jets, tt)
 - using only event kinematics, no intrinsic properties (e.g., mass/flavor) of the large-R jet
 - ParticleNet cc-tagger then used to define 3 cc-flavor enriched regions and reject light/bb-flavor jets
 - finally: fit to the ParticleNet-regressed large-R jet mass shape for signal extraction
- Kinematic BDT, ParticleNet cc-tagger and regressed jet mass largely independent of each other
 - allowing for a simple and robust strategy for background estimation and signal extraction


Background estimation

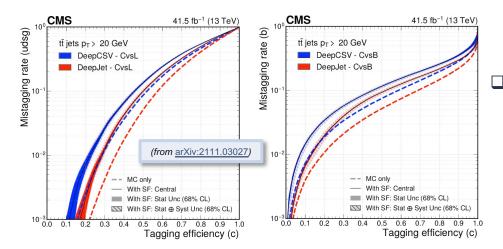
- Normalizations of main backgrounds estimated via dedicated data control regions (CRs)
 - V+jets CR: use the low kinematic BDT region
 - tt CR (0L & 1L): invert the cut on the number of additional small-R jets (i.e., $N_{ai} \ge 2$)
 - free-floating parameters scale the normalizations in CRs and signal regions (SRs) simultaneously
- CRs designed to have similar jet flavor composition as the SR
 - flavor-independent kinematic BDT + same cc-tagging requirement in CRs as in SR
 - allows to correct cc-tagging efficiency for backgrounds directly from data
 - cc-tagging SFs only needed for the signal VH(H \rightarrow cc) process (and VZ(Z \rightarrow cc))
 - conservative uncertainty (2x/0.5x) for the misidentification of $H(Z) \rightarrow bb$ as $H(Z) \rightarrow cc$



- lacktriangle Minor backgrounds (single top, dibosons, VH(H ightarrow bb)) estimated from simulation
 - dibosons: applying differential NNLO QCD + NLO EW corrections as a function of p_T(V) [JHEP 2002 (2020) 087]

Resolved-jet topology

Overview of the resolved-jet topology



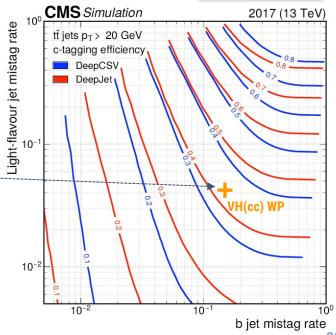
- Main challenges
 - Charm (c) tagging
 - QCD (reducible) and V+jets (irreducible) background
 - Relatively poor invariant mass resolution
- ☐ Higgs candidate reconstruction
 - Select two AK4-jets with the highest c-tagger discriminant score as Higgs jets
 - Dedicated c-jet energy regression for improved c-jet energy scale and resolution (eg. recovery of neutrino, unclustered hadrons, etc.) + Recover FSR-jets
 - Kinematic-fit (2L channels)
- Analysis strategy (three channels: 0L, 1L, 2L)
 - Control regions for background normalizations
 - BDT for final signal extraction

Charm-tagging in the resolved-jet topology

DeepJet algorithm as charm tagger

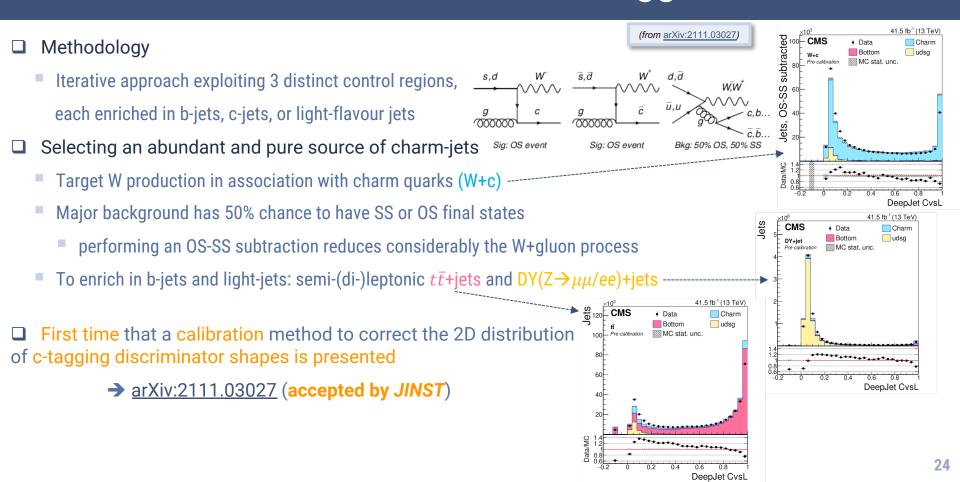
- ☐ C-jets have "intermediate" properties to b- and light-jets
 - It translates into the need to separate c-jets simultaneously from light-jets and bottom jets
- □ From DeepJet output score it is possible to build two c-jet taggers → CvsL and CvsB
 - CvsL: it is optimized to differentiate charm-jets form light- or gluon-jets
 - CvsB: it is optimized to differentiate charm-jets from bottom-jets

- Improvement vs DeepCSV (used in <u>2016 analysis</u>)
 - Increase leading-jet c-tagging efficiency by ~30% for fixed b-jet and light-jet mis-tagging rate

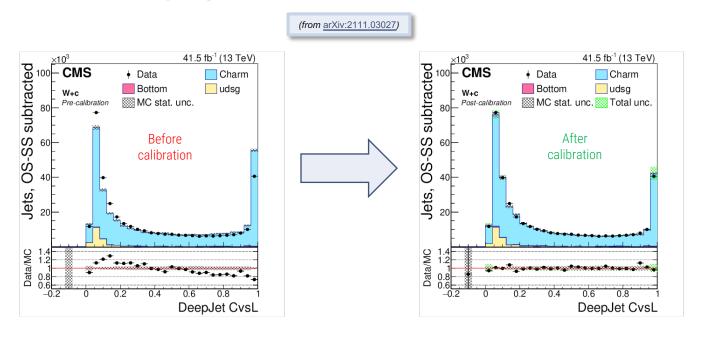

Charm-tagging in the resolved-jet topology

- Definition of leading-jet working point
 - Studies of CvsB/CvsL jet score distributions in 2D plane

CvsL>0.225, CvsB>0.4 → c-jet identification efficiency of ~43% with a b-jet and light-jet


Deeplet CvsL

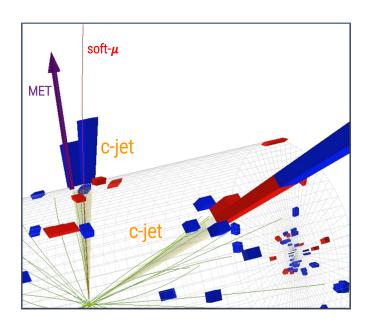
mis-tagging rate respectively of ~15% and ~4% (depending on the year) c-jets mis-identified as light ones c-jets CMS Simulation 2017 (13 TeV) DeepJet CvsB 10-3 Deeplet: c jets 10-4 0/6 (from arXiv:2111.03027) 0.4 10-7 0.2 0.2 0.4 0.6 0.8 1.0


(from arXiv:2111.03027)

A new method to calibrate charm-taggers

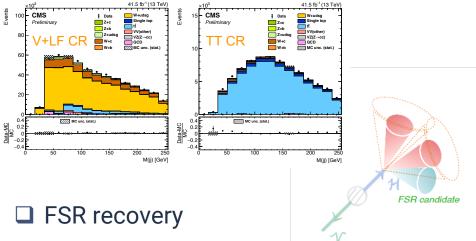
A new method to calibrate charm-taggers

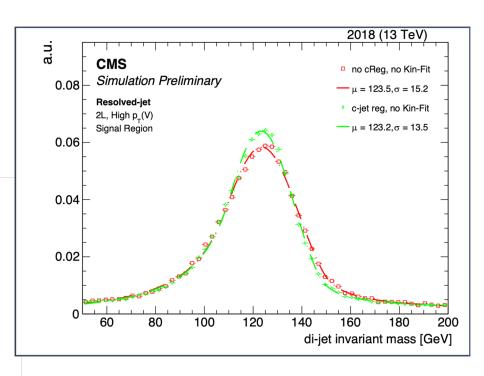
Application of the reshaping scale-factors



- Very good data/MC agreement after the calibration
 - Application through an event-by-event re-weighting: $w_i = \prod_{i=1}^{j=1} s f_i(CvsL, CvsE)$

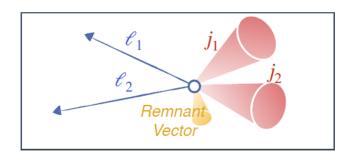
A dedicated charm-jet energy regression

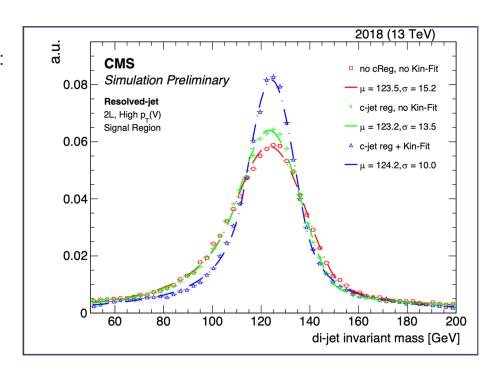

Goal: improve c-jet energy scale and resolution


- ☐ Inspired by b-jet energy regression [arXiv:1912.06046]
 - Jet energy measurements not always accurate:
 - neutrinos, hadrons outside jet radius, etc. Effect enhanced in c-jets and b-jets
 - Dedicated algorithm to determine c-jet energy scale and resolution
 - A DNN algorithm pioneered for the <u>observation of the H→bb decay</u>
- Regression performed using DNN architecture:
 - Trained using c-jets collected from W \rightarrow cq decays in $t\bar{t}$ +jets MC events
 - Target is represented by $p_T(gen)/p_T(reco)$
- Input features
 - Total of 43 input variables as input to the network
 - Jets: kinematics, energy fraction, leading+soft-lepton tracks, pile-up, secondary vertices
 - Jet energy shapes (e.g. energy fraction, etc), jet constituents, $p_T(jet)/p_T(lepton)$

A dedicated charm-jet energy regression

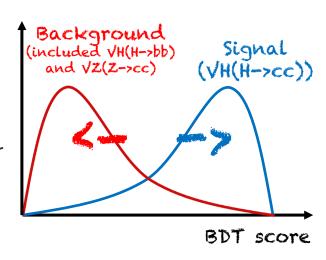
- □ ~15% improvement in mass resolution
 - Depending on the jet p_T
- Validated in VH(H→cc) control regions



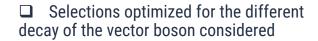

- Further improve di-jet invariant mass resolution
- Jets with $p_T < 20$ GeV, $|\eta| < 3$, and within $\Delta R < 0.8$ of Higgs jets are included in Higgs 4-momentum

Kinematic-fit in the 2L channels

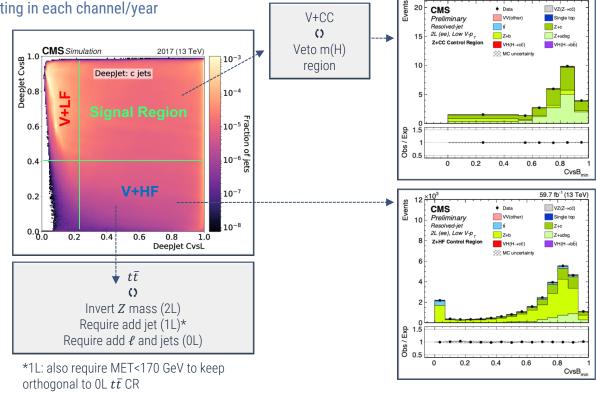
- \square No intrinsic missing energy in $Z(\ell\ell)H(cc)$ process
- \square Improve jet p_T measurement through a kinematic fit:
 - Constrain di-lepton system to the Z boson mass
 - Balance the $\ell\ell$ +cc+jets system in the (p_x, p_y) plane
 - Allow MET to adjust within the experimental resolution



■ Up to ~30% improvement in Higgs mass resolution

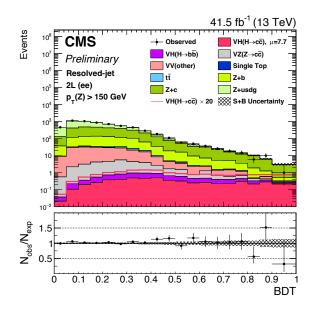

Signal extraction – BDT training in SRs

- BDT trained to separate signal from background samples
 - Use combination of event kinematic observables, Higgs and vector boson properties, particle flavor variables (tagger information), and kinematic-fit variables (only in 2L channels)
- Separate BDTs trained for each channel and data taking year
 - Separate BDTs trained for high- and low-p_T(V) 2L
 - Variables used dependent on channel
- ☐ Reshaped BDT distributions used in SR for the final fit

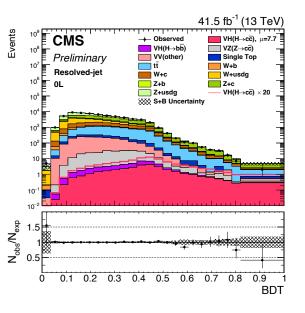


Analysis categories and background estimation

- Accurate modeling of jet flavor in V+Jet background is vital for proper signal extraction
 - Separate rate parameters for V+c, V+b, and V+light processes (no W+b) + tt +iets
 - Freely floating in each channel/year

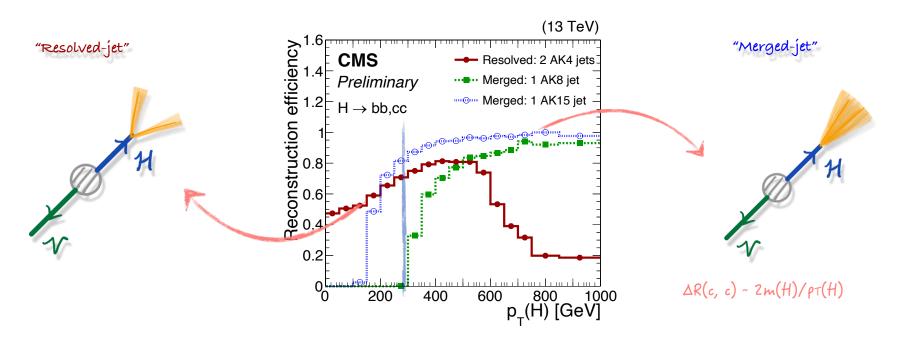

- Definition of 4 analysis categories
 - **0L**: $p_T(Z) > 170 \text{ GeV}$
 - **1L**: $p_T(W) > 100 \text{ GeV}$
 - **2L Low-p_T**: $60 \text{ GeV} < p_T(Z) < 150 \text{ GeV}$
 - **2L High-p_T**: $p_T(Z) > 150 \text{ GeV}$
- All the categories have TT, LF, HF and CC CRs (1L has not HF) + 1 SR
- Simultaneous fit to BDT in SR and tagger shapes in CRs




59.7 fb⁻¹ (13 TeV)

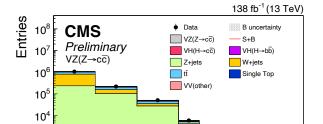
Postfit plots - Signal regions

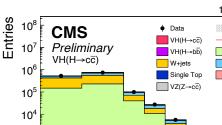
- ☐ Postfit distribution of the BDT discriminant obtained with the 2017 data (more in the back-up)
 - 7 Signal regions in each year: $2L(ee/\mu\mu)$ Low- $p_T(V)$ and High- $p_T(V)$, $1L(e/\mu)$, and 0L



Results

Combination of the two topologies

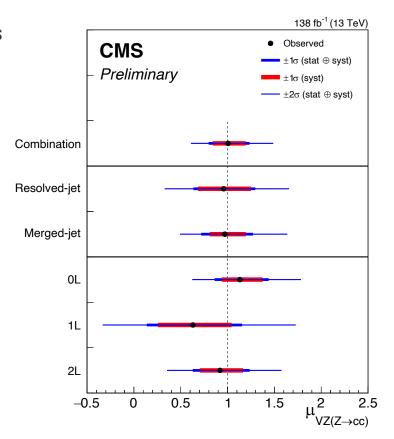

- \Box The two topologies are made orthogonal via presence of AK15 jet with p_T > 300 GeV
 - p_T threshold chosen to maximize expected sensitivity



Uncertainties

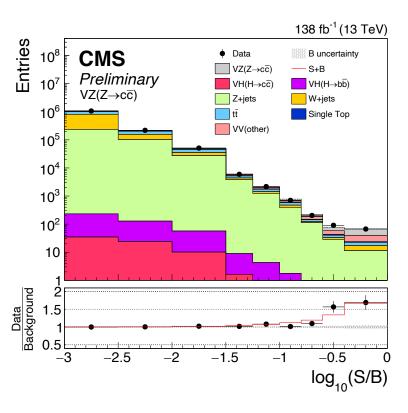
- ☐ All correlated between topologies, except:
 - Background normalization SFs for V+jets and tt̄
 - c-tagging efficiencies
- Main uncertainties
 - Limited statistics of data
 - Statistical uncertainties of V+jets samples
 - Charm tagging efficiencies

Uncertainty source	$\Delta\mu/\left(\Delta\mu\right)_{\rm tot}$
Statistical	85%
Background normalizations	37%
Experimental	48%
Sizes of the simulated samples	37%
Charm identification efficiencies	23%
Jet energy scale and resolution	15%
Simulation modeling	11%
Luminosity	6%
Lepton identification efficiencies	4%
Theory	22%
Backgrounds	17%
Signal	15%

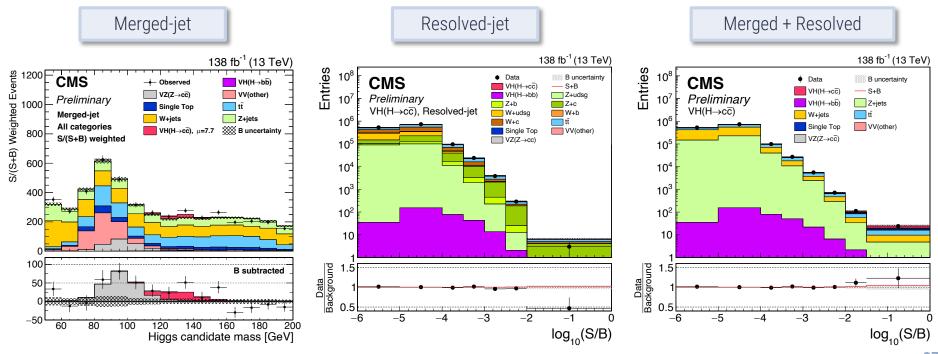


VZ(Z→cc) results

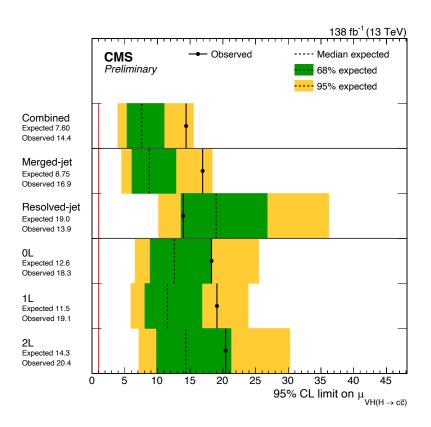
- Analysis validated by looking for VZ(Z→cc) process
 - Same analysis procedure, but extracting VZ(Z→cc) signal in the final fit
 - Resolved-jet: retrained BDTs with VZ(Z→cc) as signal
 - VH(H→cc) fixed to SM expectation
- \Box Observed (expected) signal strength for VZ(Z \rightarrow cc):


$$\mu_{VZ(Z\to cc)} = 1.01^{+0.23}_{-0.21}(1.00^{+0.22}_{-0.20})$$
 with a significance of 5.7 σ (5.9 σ)

□ First observation of Z→cc at hadron collider!


VZ(Z→cc) results

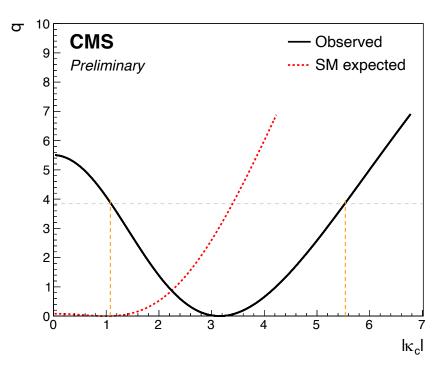
 \square Observing the excess: distribution of events ordered by $log_{10}(S/B)$


VH(H→cc) results

- Merged-jet topology: distribution of the Higgs boson candidate mass
- \square Resolved-jet topology and the combination: ordering the events by $\log_{10}(S/B)$

VH(H→cc) results

- Observed (expected) upper limit on VH(H \rightarrow cc) signal strength at 95% CL: $\mu_{VH(H\rightarrow cc)} < 14 \ (7.6^{+3.4}_{-2.3})$
 - Strongest limits on VH(H→cc) process to date!
 - ATLAS Full Run 2 result: $\mu_{VH(H\to cc)}$ < 26 (31) [arXiv:2201.11428]
- Best fit signal strength: $\mu_{VH(H\to cc)} = 7.7^{+3.8}_{-3.5}$
 - Consistent with the SM prediction within 2σ
- □ Obs. (Exp.) upper limits from each topology:
 - Resolved-jet topology: 14(19) × SM
 - Merged-jet topology: 17(8.8) × SM


VH(H→cc) results

Results used to place new constraints on κ_c

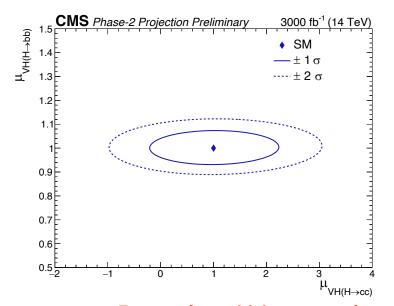
Only considering effects on $\mathcal{B}(H \to cc)$ and fixing all other couplings to their SM values

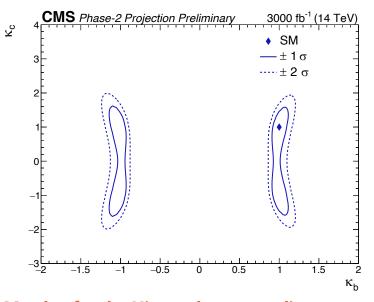
$$\mu_{VH(H\to cc)} = \frac{\kappa_c^2}{1 + \mathcal{B}_{SM}(H\to cc) \times (\kappa_c^2 - 1)}$$

- The 95% CL intervals obtained with likelihood scans
 - observed: $1.1 < |\kappa_c| < 5.5$
 - expected: $|\kappa_c| < 3.4$
- Strongest constraints on $|\kappa_c|$ to date
 - Outperforming indirect measurements of $|\kappa_c| \lesssim 6.2$: PRD 92 (2015) 033016
 - Comparable to the previous projection for HL-LHC [ATL-PHYS-PUB-2021-039]

Conclusions

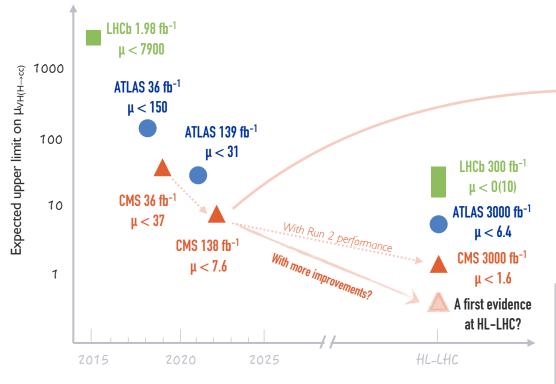
- \square New results of the CMS search for the VH(H \rightarrow cc) process are presented
 - Benefit from the full Run 2 dataset
 - Substantial improvements in charm tagging performance
 - Major upgrades of analysis techniques, such as jet energy/mass regression, kinematic fits, etc.
- \blacksquare Analysis validated by measuring VZ(Z \rightarrow cc) signal strength: $\mu_{VZ(Z\rightarrow cc)}$ = $1.01^{+0.23}_{-0.21}$
 - Significance of 5.7σ (5.9σ) → First observation of $Z\rightarrow cc$ at a Hadron Collider!
- □ Upper limits on VH(H \rightarrow cc): $\mu_{VH(H\rightarrow cc)}$ < 14 (7.6 exp.)
 - Almost 5x increase in expected sensitivity compared to analysis using 2016 data
 - Constraints on Higgs-charm coupling: $1.1 < |\kappa_c| < 5.5 (|\kappa_c| < 3.4 \text{ exp.})$ Most stringent to date!


Prospects


Projection at HL-LHC: Setup

- Extrapolation of the merged-jet analysis to HL-LHC with 3000 fb⁻¹ data
- $lue{}$ Modifications to the Run 2 analysis to allow for a simultaneous constraint on H ightarrow bb and H ightarrow cc
 - **addition of 3 categories enriched in H** \rightarrow **bb decays**, selected with the ParticleNet bb-tagging discriminant
 - very small (1-2%) overlap of bb and cc categories events assigned to a unique category
 - large-R jet p_T threshold lowered from 300 GeV to 200 GeV increasing signal acceptance
- ☐ Systematic uncertainties adjusted according to the Yellow Report [CERN-2019-007]
 - theoretical uncertainties: reduced by half
 - most experimental uncertainties: scaled down with $\sqrt{\mathcal{L}}$
 - bb and cc tagging efficiencies: constrained by $VZ(Z \rightarrow bb)$ and $VZ(Z \rightarrow cc)$ events to ~3% and ~5%
 - misidentification of H \rightarrow bb as H \rightarrow cc: a prominent uncertainty on H \rightarrow cc measurement at HL-LHC
 - assumed to be reduced from ~100% (Run 2) to 20% in the projection

Projection at HL-LHC


- \square Simultaneous extraction of the H \rightarrow bb and H \rightarrow cc signal strengths
 - $\mu_{VH(H \to bb)} = 1.00 \pm 0.03 \text{ (stat.)} \pm 0.04 \text{ (syst.)} = 1.00 \pm 0.05 \text{ (total)}$
 - $\mu_{VH(H \to cc)} = 1.0 \pm 0.6 \text{ (stat.)} \pm 0.5 \text{ (syst.)} = 1.0 \pm 0.8 \text{ (total)}$

Expected sensitivity approaches the SM value for the Higgs-charm coupling.

A charming journey

From O(1000) to O(100) to O(10) in ~5 years. A combined effort and creativity from instrumentation, physics objects and analysis techniques!

First observation of $Z \rightarrow cc$ at a hadron collider! Opening a new era for future explorations.

- More channels: ttH(cc), VBF H(cc), indirect constraints, etc.
- Improvements in advanced analysis techniques
- (e.g., Deep Learning) and instrumentation (e.g., tracker)
- Reduction of systematic uncertainties: c-tagging, event modeling, theoretical uncertainties, . . .

A charming journey ahead!

Backups

$H \rightarrow cc$ searches at the LHC

■ ATLAS:

- Phys. Rev. Lett. 120 (2018) 211802 (36 fb⁻¹)
- [arXiv:2201.11428] (139 fb⁻¹)
- [ATL-PHYS-PUB-2021-039] (HL-LHC projection, 3000 fb⁻¹)

☐ CMS:

- [JHEP 03 (2020) 131] (36 fb⁻¹)
- [CMS-PAS-HIG-21-008] (138 fb⁻¹; HL-LHC projection, 3000 fb⁻¹)

☐ LHCb:

- [LHCb-CONF-2016-006] (1.98 fb⁻¹)
- [LHCb-PUB-2018-009] (HL-LHC projection, 300 fb⁻¹)

Baseline event selections

Merged-jet topology

Variable	0L	1L	2L
p_{T}^{ℓ}	_	(>25,>30)	>20
Lepton isolation	_	(<0.06, —)	(<0.25, —)
$N_{\mathrm{a}\ell}$	=0	=0	_
$M(\ell\ell)$	_	_	75–105
$N_{ m small-}^{ m aj}$	<2	<2	<3
$p_{\mathrm{T}}^{\mathrm{miss}}$	>200	>60	_
$p_{\mathrm{T}}(\mathrm{V})$	>200	>150	>150
$p_{\rm T}({\rm H_{cand}})$	>300	>300	>300
$m\left(\mathbf{H}_{\mathrm{cand}}\right)$	50-200	50-200	50-200
$\Delta \phi(V, H_{cand})$	>2.5	>2.5	>2.5
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{j})$	>0.5	_	_
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	_	< 1.5	_
Kinematic BDT	>0.55	0.55–0.7, >0.7	>0.55
cc discriminant			
High purity	>0.99	>0.99	>0.99
Medium purity	0.96-0.99	0.96-0.99	0.96-0.99
Low purity	0.90-0.96	0.90-0.96	0.90-0.96

Resolved-jet topology

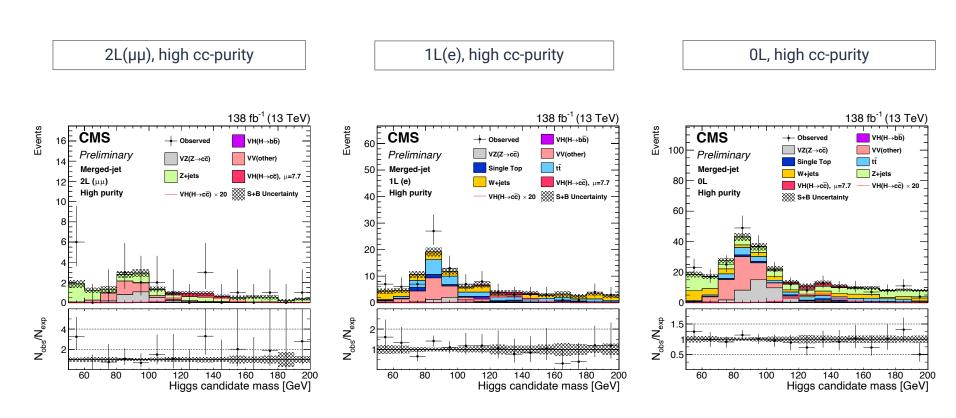
			-			
Variable	0L	1L	$2L low-p_T(V)$	2L high-p _T (V)		
p_{T}^{ℓ}	_	(>25,>30)	>20	>20		
Lepton isolation	_	(<0.06, —)	(<0.25, —)	(<0.25, —)		
$N_{a\ell}$	=0	=0	_	_		
$M(\ell\ell)$	_		75–105	75–105		
$p_{\mathrm{T}}(\mathrm{j}_1)$	>60	>25	>20	>20		
$p_{\mathrm{T}}(\mathrm{j}_2)$	>35	>25	>20	>20		
$CvsL(j_1)$	>0.225	>0.225	>0.225	>0.225		
$CvsB(j_2)$	> 0.4	> 0.4	>0.4	>0.4		
$N_{ m small-}^{ m aj}$	_	<2	_	_		
$p_{ m T}^{ m miss}$	> 170		_	_		
$p_{\mathrm{T}}^{\mathrm{miss}}$ significance	_	>4	_	_		
$p_{\mathrm{T}}(\mathrm{V})$	>170	>100	60-150	>150		
$p_{\rm T}({\rm H_{cand}})$	>120	>100	_	_		
$m\left(\mathbf{H}_{\mathrm{cand}}\right)$	< 250	<250	<250	<250		
$\Delta \phi(V, H_{cand})$	>2.0	>2.5	>2.5	>2.5		
$\Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, j)$	>0.5	_	_	_		
$\Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$		< 2.0	_			

Uncertainties

Breakdown of the uncertainties in each topology

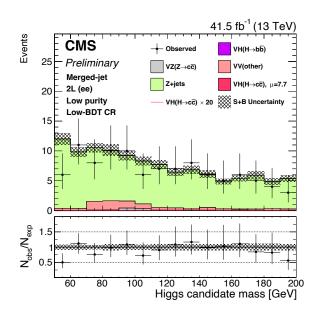
Merged-jet topology

Table 3: The relative contributions to the total uncertainty on $\mu_{VH(H\to c\overline{c})}$ in the merged-jet analysis, with a best fit value $\mu_{VH(H\to c\overline{c})}=8.7^{+4.6}_{-4.0}$.

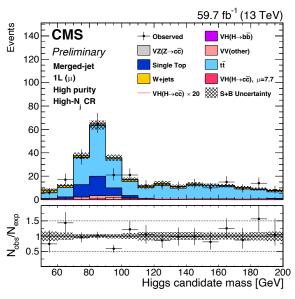

) _{tot} 8%
8%
9%
0%
4%
6%
5%
1%
5%
2%
5%
1%
4%

Resolved-jet topology

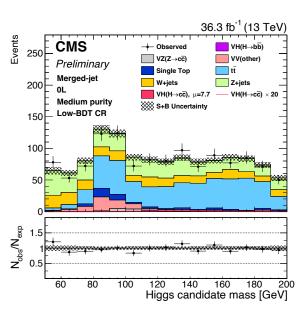
Table 4: The relative contributions to the total uncertainty on $\mu_{VH(H \to c\overline{c})}$ in the resolved-jet analysis, with a best fit value $\mu_{VH(H \to c\overline{c})} = -9.5 \pm 9.6$.

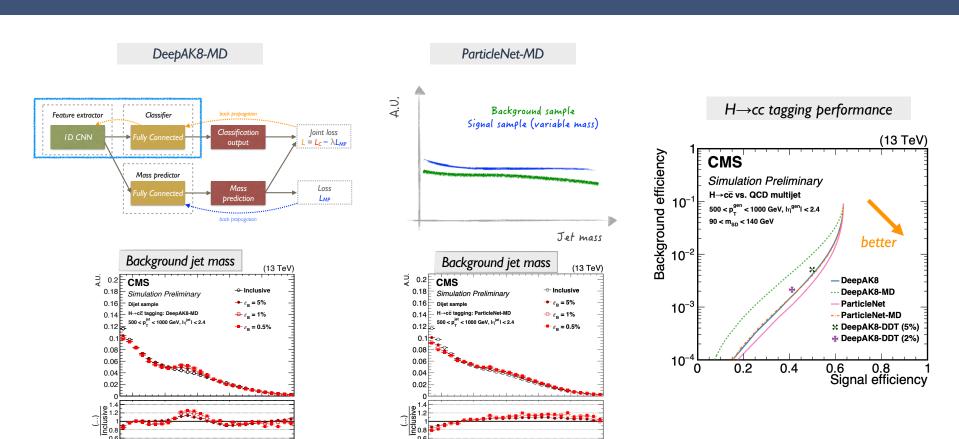

, , , , , , , , , , , , , , , , , , , ,	
Uncertainty source	$\Delta\mu/\left(\Delta\mu\right)_{\mathrm{tot}}$
Statistical	66%
Background normalizations	28%
Experimental	72%
Sizes of the simulated samples	59%
Charm identification efficiencies	27%
Jet energy scale and resolution	17%
Simulation modeling	20%
Luminosity	13%
Lepton identification efficiencies	10%
Theory	22%
Backgrounds	21%
Signal	7%

Merged-jet topology: signal regions



Merged-jet topology: control regions

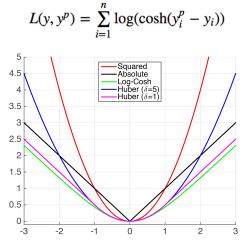



1L(μ), tt CR, high cc-purity

0L, V+jets CR, medium cc-purity

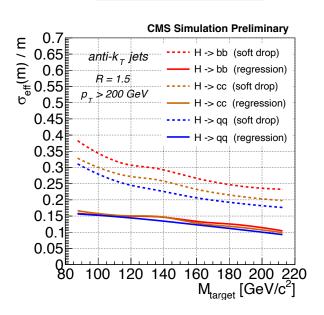
Comparison of mass decorrelation methods

100

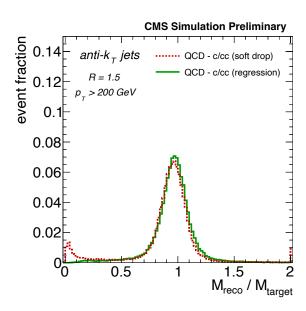

150

200

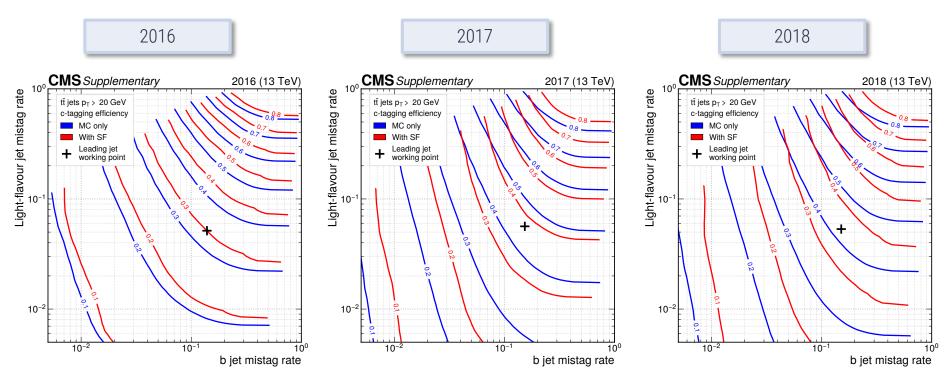
250 300 m_{SD} [GeV]


Large-R jet mass regression

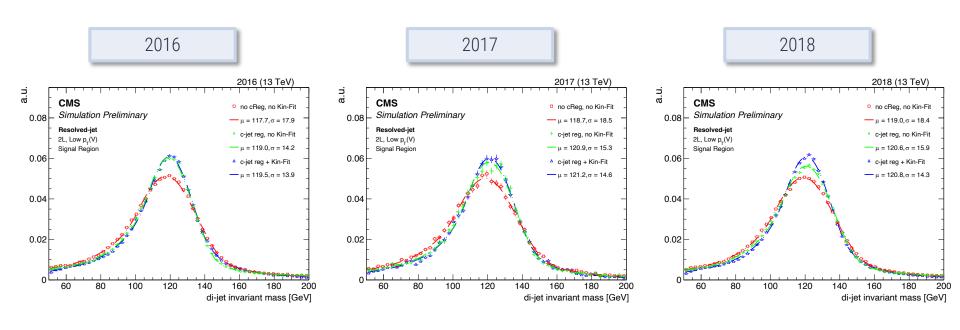
Loss function: LogCosh



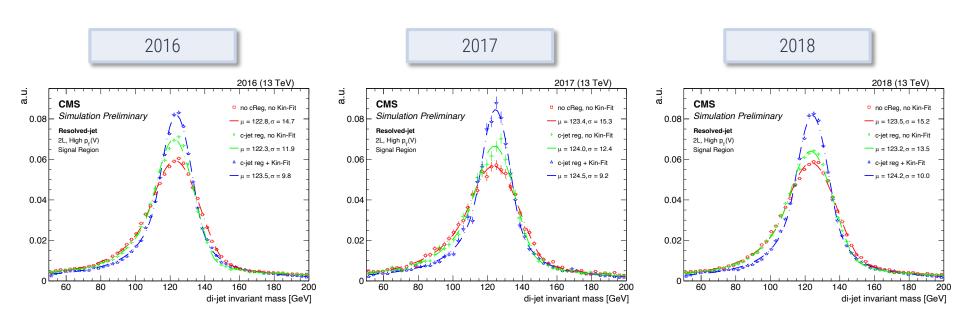
https://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote10.html


Signal jet mass resolution

Background jet mass response


C-tagger ROC curves

- CMS c-tagging WP: ~40% (c), ~16% (b), ~4% (light)
- ATLAS c-tagging WP [arXiv:2201.11428]: 27% (c), 8% (b), 1.6% (light)


C-jet energy regression and kinematic fit

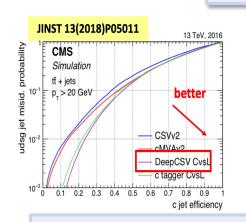
□ 2-lepton Low- $p_T(V)$ category – 60 GeV < $p_T(V)$ < 150 GeV

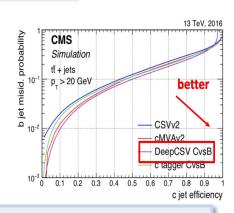
C-jet energy regression and kinematic fit

□ 2-lepton High- $p_T(V)$ category – $p_T(V) > 150$ GeV

Charm-tagging in the "resolved-jet" topology

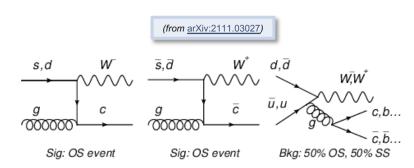
DeepJet algorithm – the cornerstone of the VH(cc) resolved-jet topology analysis

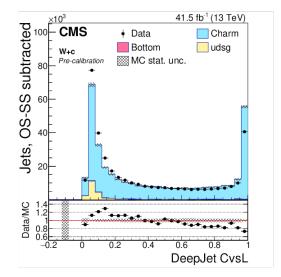

- Multiclassifier Deep Neural Network
 - Optimized for AK4-jets
 - Returns the probability for a given jet to be originated by a b-, c- or light-quark
- DNN architecture:
 - Separate 1D CNNs to process three low-level feature classes
 - For each class, concatenate multiple CNNs with decreasing dimensions
 - Compress the features to lower dimensional space
 - RNNs (LSTM type) applied after CNNs
 - Better handles the variable length sequence (PF candidates/SV)
 - Fully connected layer to connect all channels
- 🔲 Input variables: 🔲
 - Properties of PF-candidates


6 raw scores

Output:

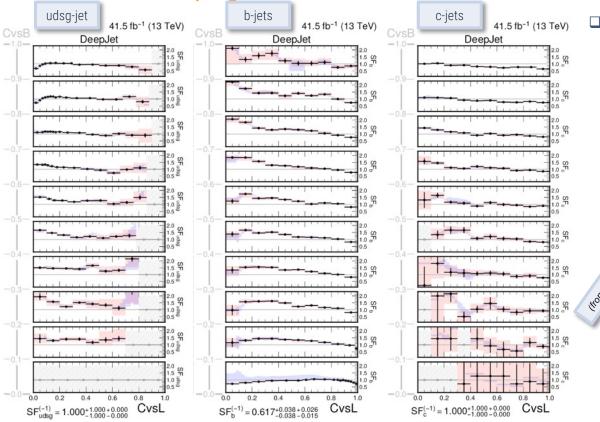
- Global jet features
- Secondary vertices

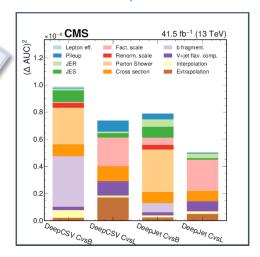



- DeepCSV: predecessor of DeepJet
- Used in the CMS VH(cc) analysis with 2016 data [JHEP 2020,131]

A new method to calibrate charm-taggers

DeepJet algorithm calibration


- Methodology
 - Iterative approach exploiting three distinct control regions that are enriched with either b-jets, c-jets, or light-flavour and gluon jets
 - First time that a calibration method to correct the 2D distribution of c-tagging discriminator shapes is presented → arXiv:2111.03027 (accepted by JINST)
- Search for an abundant and pure source of charm-jets
 - Target W production in association with charm quarks
 - The relevant events involve a leptonically decaying W boson and a c-jet
 - These c-jets are identified using the semileptonic decay of the charmed hadrons, which produces a soft muon within the jet
 - Major background has 50% chance to have SS or OS final states → performing an OS-SS subtraction reduces considerably the W+gluon process
 - To enrich in b-jets and light-jets, the semi-(di-)leptonic $t\bar{t}$ +jets and DY(Z $\rightarrow \mu\mu/ee$)+jets processes are considered



A new method to calibrate charm-taggers

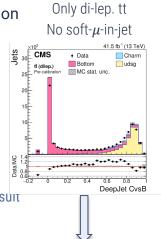
Extraction of reshaping data-to-simulation scale factors

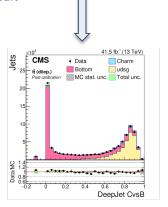
- ☐ SFs as a function of CvsL in bins of CvsB
 - Fixed bin width along CvsB and an adaptive binning scheme along CvsL (stat. depending)
 - Total uncertainties (red envelopes) relatively small in the region of interest of the analysis
 - Total uncertainties breakdown
 - Overall smaller than DeepCSV

A new method to calibrate charm-taggers

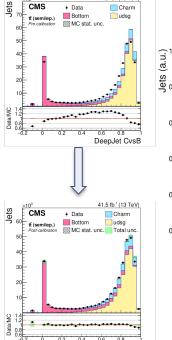
Validate robustness of the SFs derivation

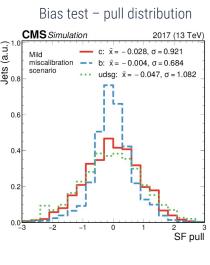
Check possible bias due to the soft- μ -in-jet selection

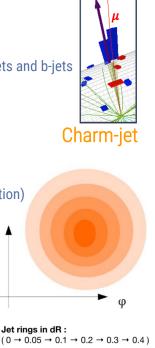

• SFs are derived without soft- μ selection

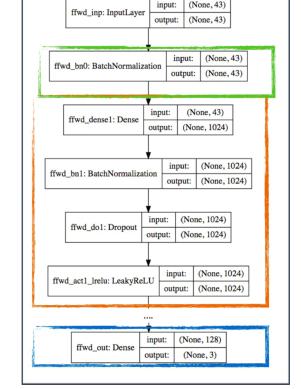

- ☐ Check possible bias between semileptonic or dileptonic tt final states
 - SFs are derived also for the two separate processes independently
- Check possible bias due in the fit:

Inject artificial SFs to calculate the pulls between the fit result and the injected one




All the checks shown no bias in the SFs derivation




(from arXiv:2111.03027)

A dedicated charm-jet energy regression

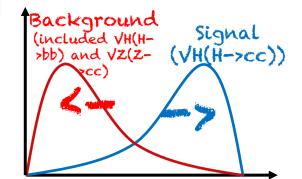
Goal: improve *c*-jet energy scale and resolution

- ☐ Inspired by b-jet energy regression [arXiv:1912.06046]
 - Jet energy measurements not always accurate:
 - loss of neutrinos, hadrons outside jet radius. Effect enhanced in c-jets and b-jets
 - Dedicated algorithm to determine c-jet energy scale and resolution
 - Algorithm pioneered for the observation of the H→bb decay mode
- Regression performed using DNN architecture:
 - Feed-forward fully connected Deep NN (neurons with Leaky ReLu activation)
 - 6 hidden layers + batch normalization + dropout
 - Trained using c-jets collected from W $\rightarrow cq$ decays in $t\bar{t}$ MC events
 - Target is represented by $p_T(gen)/p_T(reco)$
- Input features
 - Total of 43 input variables in input to the network
 - Jets: kinematics, energy fraction, leading+soft-lepton tracks, pile-up, secondary vertexes
 - Jet energy shapes (e.g. energy fraction, etc), jet constituents, $p_T(jet)/p_T(lepton)$

Signal extraction – BDT training in SRs

Ŀ	Variable	Description	0L	1L	2L	1
-	m(H)	H mass	-/-	-/-	-/-	ı
	$p_{\rm T}({\rm H})$	H transverse momentum	<u> </u>	./	1	ı
	$p_{\rm T}({\rm V})$	vector boson transverse momentum		1	1	ı
	$m_{\rm T}({\rm V})$	vector boson transverse monentum vector boson transverse mass		./	_	ı
	$p_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse momentum	_	*		ı
	$p_{\rm T}$ $p_{\rm T}({\rm V})/p_{\rm T}({\rm H})$	ratio between vector boson and H transverse momenta	V	*	_	
H	CvsL _{max}	CvsL value of the leading CvsL jet	√	√	√	i
	CvsB _{max}	CvsB value of the leading CvsL jet	✓	✓	✓	
	CvsL _{min}	CvsL value of the subleading CvsL jet	✓	✓	✓	
	CvsB _{min}	CvsB value of the subleading CvsL jet	✓	✓	✓	
Г	p_{Tmax}	$p_{\rm T}$ of the leading $CvsL$ jet	√	√	√	Ī
	p_{Tmin}	$p_{\rm T}$ of the subleading $CvsL$ jet	✓	✓	✓	ı
	$\Delta \phi(V, H)$	azimuthal angle between vector boson and H	✓	✓	✓	
	$\Delta R(j_1,j_2)$	ΔR between leading and subleading $CvsL$ jets	_	✓	✓	ı
	$\Delta \phi(\mathbf{j}_1, \mathbf{j}_2)$	azimuthal angle between leading and subleading CvsL jets	✓	✓	_	
	$\Delta \eta(j_1, j_2)$	difference in pseudorapidity between leading and subleading CvsL jets	✓	✓	✓	
	$\Delta \phi(\ell_1, \ell_2)$	azimuthal angle between leading and subleading p_T leptons	_	_	✓	ı
	$\Delta \eta(\ell_1, \ell_2)$	difference in pseudorapidity between leading and subleading p_T leptons	_	_	✓	
	$\Delta \phi(\ell_1, j_1)$	azimuthal angle between leading p_T lepton and leading $CvsL$ jet	_	✓	_	
	$\Delta \phi(\ell_2, j_1)$	azimuthal angle between subleading p_T lepton and leading $CvsL$ jet	_	_	✓	
	$\Delta \phi(\ell_2, j_2)$	azimuthal angle between subleading p_T lepton and subleading $CvsL$ jet	_	_	✓	
	$\Delta \phi(\ell_1, p_{\mathrm{T}}^{\mathrm{miss}})$	azimuthal angle between leading p_T lepton and missing transverse momentum	_	✓	_	
	$\Delta \eta(\ell_1, t)$	difference in pseudorapidity between leading p_T lepton and b-tagged jet from top quark decay	_	✓	_	
	$\Delta\phi(\ell_1,t)$	azimuthal angle between leading p_T lepton and b-tagged jet from top quark decay	_	✓	_	ı
	$\Delta R(\ell_1, t)$	ΔR between leading p_T lepton and b-tagged jet from top quark decay	_	✓	_	
	CvsLt	CvsL value of the b-tagged jet from top quark decay	_	✓	_	
	CvsB ₊	CvsB value of the b-tagged jet from top quark decay	_	✓	_	
	$P(b+bb)_{t}$	DeepJet prob(b+bb) value of the b-tagged jet from top quark decay	_	✓	_	
	m(t)	Reconstructed top quark mass	_	✓	_	
	N _{small-R}	Number of small-R additional jets after the FSR subtraction	_	✓	_	ı
	$\sigma_{cReg}(j_1)$	leading $p_{\rm T}$ jet resolution from c-jet energy regression	✓	✓	✓	1
	$\sigma_{cReg}(\mathbf{j}_2)$	subleading p_T jet resolution from c-jet energy regression	✓	✓	✓	
Г	$\Delta \eta(V, H) \ _{\text{kinfit}}$	difference in pseudorapidity between vector boson and H, after kinematic-fit	_	_	√	i
	$\Delta \phi(V, H) \ _{\text{kinfit}}$	azimuthal angle between vector boson and H, after kinematic-fit	_	_	✓	
	$m(H) _{kinfit}$	H mass after kinematic-fit	_	_	✓	1
	$p_{\mathrm{T}}(\mathrm{H}) _{\mathrm{kinfit}}$	H transverse momentum after kinematic-fit	_	_	✓	
	$p_{\mathrm{Tmax}} _{\mathrm{kinfit}}$	p_{T} of the leading $CvsL$ jet after kinematic-fit	_	_	✓	J
	$p_{\text{Tmin}}\ _{\text{kinfit}}$	$p_{\rm T}$ of the subleading CvsL jet after kinematic-fit	_	_	✓	
	$p_{\rm T}({\rm V})/p_{\rm T}({\rm H})\ _{\rm kinfit}$	ratio between vector boson and H transverse momenta after kinematic-fit	_	_	✓	
	$\sigma(H) _{kinfit}$	H invariant mass resolution from kinematic fit	_	_	✓	
L	. 7 manus					J

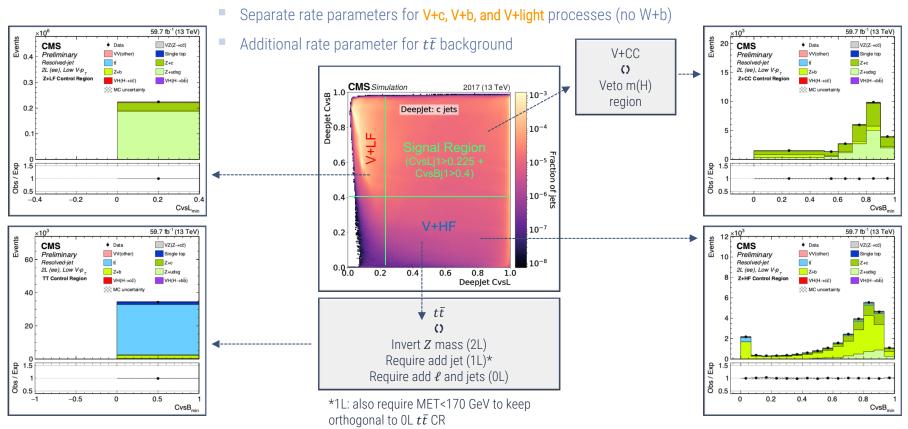
Higgs and vector boson properties


c-tagging score

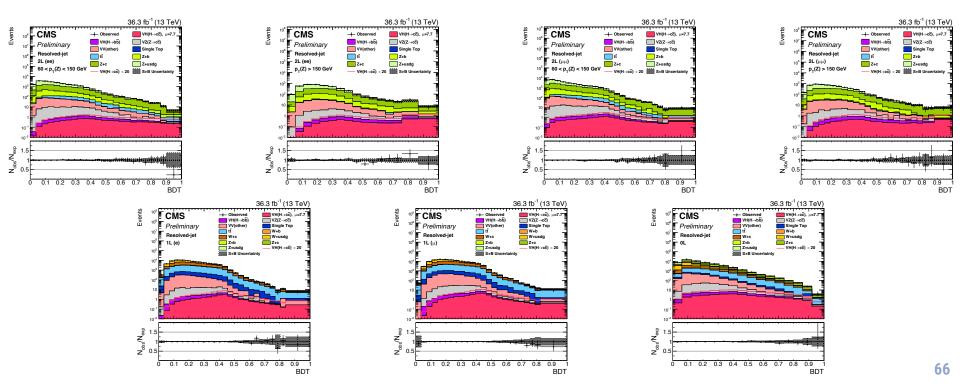
event

kinematics

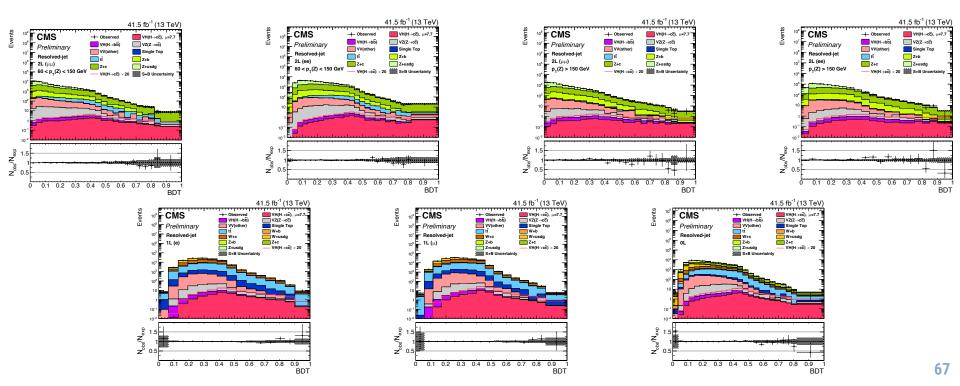
- BDT trained to separate signal from background samples
 - Use combination of kinematic observables and particle flavor variables (tagger informations)
- ☐ Separate BDTs trained for each channel and data taking year
 - Separate BDTs trained for high- and low-p_T(V) 2L
 - Variables used dependent on channel


☐ Reshaped BDT distribution used in SR during final fit

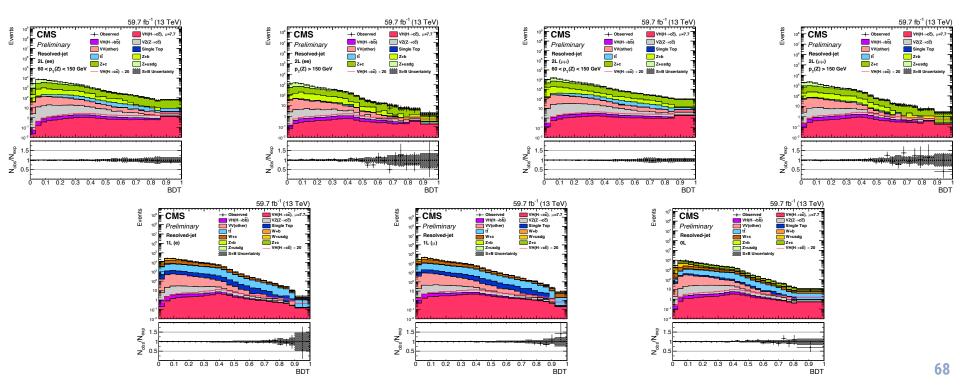
Kinfit Variables (2L only)


Background estimation – Resolved-jet

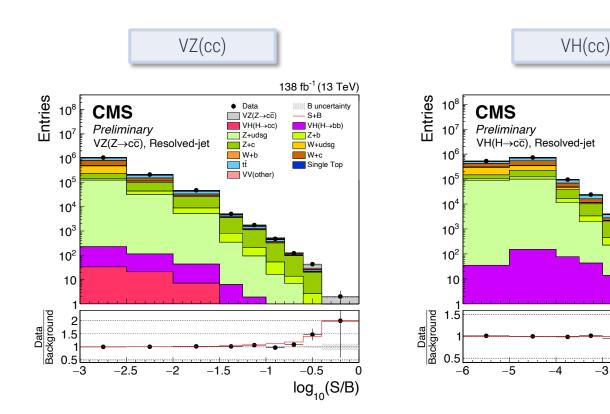
■ Accurate modeling of jet flavor in V+Jet background is vital for proper signal extraction


Postfit plots - Signal regions - 2016

- Postfit distribution of the BDT discriminant obtained with the 2016 data
 - 7 Signal regions in each year: $2L(ee/\mu)$ Low- $p_T(V)$ and $-High-p_T(V)$, $1L(e/\mu)$ and 0L


Postfit plots – Signal regions - 2017

- Postfit distribution of the BDT discriminant obtained with the 2017 data
 - 7 Signal regions in each year: $2L(ee/\mu)$ Low- $p_T(V)$ and $-High-p_T(V)$, $1L(e/\mu)$ and 0L


Postfit plots – Signal regions - 2018

- Postfit distribution of the BDT discriminant obtained with the 2018 data
 - 7 Signal regions in each year: $2L(ee/\mu)$ Low- $p_T(V)$ and $-High-p_T(V)$, $1L(e/\mu)$ and 0L

Resolved-jet topology - results

 \square Resolved-jet – all categories: ordering the events by $\log_{10}(S/B)$

138 fb⁻¹ (13 TeV)

Z+udsg

VV(other)

 $\log_{10}(S/B)$

Z+c

W+b

VH(H→cc̄)

VH(H→bb)

Z+b

W+c

W+udsg

Single Top

-2

VZ(Z→cc)

B uncertainty