EvtGen and Pythia developments

EvtGen

Fernando Abudinén, John Back, Michal Kreps, Thomas Latham

Pythia

Ulrik Egede, Tom Hadavizadeh, Philip Ilten, Minni Singla, Peter Skands

SwiftHep/ExcaliburHep workshop March 23, 2022

EvtGen status

- Generator package specialised for heavy-flavor hadron decays
 - Used as well inside simulation of b jets
- Contains about 130 decay models implementing specific dynamics of various decays
- Maintains detailed decay table with large number of explicit decays
 - Known decay branching fractions do not add up to 100%, remainder is filled up by generating quark configurations and passing those to Pythia8 for fragmentation
 - Fraction of decays passed to Pythia8 depends on particle (b-baryons rely more on Pythia8 than others)
- τ decays simulated using TAUOLA
- PHOTOS used for simulation of final-state radiation (FSR)
- Source code stable over past 10 years (most changes due to addition of new models)
- Recently went through some modernisation and cleanup

Plans for EvtGen

- Physics wise no plan for changes in near future
- Currently working on code consolidation
 - Unify coding style, C++ modernisation
 - Plan to decrease code duplication within decay models
 - Improve/Update documentation (Doxygen and paper/guide)
 - Implement common testing framework for validation
- Plan to make EvtGen thread safe

 - Main blockers are Tauola and Photos, which are not yet thread safe
 - Work on source-code redesign currently ongoing with help of computing engineers
 - Full adaptation might be challenging (core code adaptation should be doable)

Issues with multithreading in EvtGen

- Structural limitations inside EvtGen for multithreading
 - Global instance of random number generator
 - Global instance of particle properties and decay table
- Limitations from dependences
 - TAUOLA
 - PHOTOS
- Needed structural changes identified and currently evaluating possible solutions
- Overcoming limitations from dependences are more challenging as they are external
 - TAUOLA and PHOTOS authors currently exploring ways to enable thread safety
 - Exploring use of Pythia8 as alternative to TAUOLA
 - Look for an alternative to PHOTOS (discussing about porting FSR simulation from other generators)

Pythia 8 for τ decays

- In addition to multithreading limitations, spin-state information of τ not propagated between EvtGen and TAUOLA:
 - TAUOLA expects τ from W, Z, γ or H, not from B
 - needed for analyses sensitive to au polarization
- Simulation of τ decays with spin-state propagation possible with PYTHIA8 using HME (helicity-matrix element) amplitude model.
- Main EvtGen → Pythia interface ready
- Need to iron out a few details (helicity/spin basis, initialization)

Testing framework

- Simulation needs testing and validation after structural changes due to code consolidation and implementation of thread-safety
- Tests (in different formats) exist only for about 40% of the 130 decay models
- Currently migrating all tests and adding new ones to a common testing framework
 - With common testing module and configuration files

Plans:

- ⇒ Migrate/include tests for all decay models
- ⇒ Implement automatic recognition of tests to be run depending on changes
- ⇒ Require to add new tests for each new model

Pythia status and plans

- General purpose generator for simulation of collision events of particles (electrons, protons, photons, heavy nuclei) at high-energies.
- Contains models for several aspects: hard/soft interactions, parton distributions, initial/final-state parton showers, multiparton interactions, fragmentation and decay.

Currently working on different aspects aimed at making simulation of b-hadron faster:

- B enhancement
- Doubly-heavy hadrons in Pythia

Plans for future developments:

- Forced hadronization
- Optimizing simulation with more than one heavy-quark pair

B enhancement

- Goal: make b-hadron production faster (in LHCb simulation)
- Particularly important for cases where generator consumes more CPU time than detector simulation
- Examples: production of B_s , B_c , Ξ_{cc} , Ω_{bb}
- Produced b-hadrons should still be kinematically unbiased
- Module made flexible for user to enhance $g \to c\bar{c}, b\bar{b}$ splitting
- About to be ready to tested within LHCb simulation framework GAUSS

Proof of Principle via standalone Pythia

Double-heavy hadrons in Pythia

- Pythia currently not employed for B_c or other double heavy hadrons at LHCb
- Exploring ways to increase efficiency by vetoing events without desired heavy-quark composition at early simulation stage
- Possible vetoes based on presence of correctly colour-connected heavy quarks
- Currently comparing geometrical B_c distributions with dedicated generators like BcVegPy which currently has a limited list of supported production mechanisms
- $\Delta \phi$ sensitive to production mechanism
 - ⇒More mechanisms available in Pythia 8 and thus more uniform distributions

$\Delta \phi$: angle between B_c and $X_{b(c)}$ hadron on transverse plane

Future plans

Simulation with more than one heavy-quark pair

- Currently investigating ways to improve efficiency of simulation for events with more than one heavy-quark pair produced in multiparton interactions
- Aim to study production mechanisms of quarkonia and compare simulated kinematic distributions with data

Forced hadronization

- Implement forced hadronization rather than current repeated hadronization
- Will make a considerable impact for events with baryons with multiple s like $\Omega_b(ssb)$
- Less significant impact expected for B^{\pm} , B^0

Summary and outlook

EvtGen:

- Currently working on making EvtGen threadsafe
- ⇒ Full adaptation might be challenging but the plan is to first converge on core
- ⇒ Simulation of final-state radiation (currently using PHOTOS) also a major concern
- \Rightarrow Working on using Pythia8 as alternative to TAUOLA for au simulation
- ⇒ Working on common testing framework for validation after changes

Pythia:

- lacktriangle Currently working in enhancement of b-hadron production to make simulation faster
- Exploring how to improve efficiency for events with multiple heavy quarks
- ⇒ Comparing simulated kinematic distributions with independent generators