- The
&), oY Lancaster E=3
@ Sheffield. UnlverSIty

Particle Flow, with Machine
Learning, in ATLAS

Adam, Barton (University of Lancaster), Mark Hodgkinson (University of Sheffield)

On behalf of ATLAS collaboration
Science and
Technology
Facilities Council

ATLAS

EXPERIMENT



Contents

* Overview of Particle Flow
* How it works
* Current performance
 Machine Learning
» Calorimeter calibration
* Particle Flow

e Conclusions



Particle Flow
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e Starts with Inner Detector tracks and calorimeter topological clusters as input.

 Matching algorithms associate them to each other, and when appropriate subtract out the charged calorimeter
shower (based on reference measurements of e/p distributions and their shower shapes).

* Charged shower is removed calorimeter cell by cell following an ordering principle which strives to first
remove the high density core of the shower.

 Used for jet reconstruction

* Tau reconstruction uses a different particle flow algorithm optimised for taus.
* Qutput objects have links to other objects (electrons/muons/photons/taus).

* Links based on underlying ID tracks and calorimeter topoclusters.

* Allows to redo decisions at Analysis Object Data (AOD) level, after TierO reconstruction.
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https://arxiv.org/abs/1703.10485

Shower Subtraction
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Calorimeter cells are removed one ring at a time using physics knowledge.

* Looks rather like a photo with pixels (calorimeter cells) - motivated looking at image based ML

techniques
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Small Radius Jet Performance
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e
* Improved Particle Flow jet resolution at low P+ (left)

* Due to smaller contribution to resolution from pileup (middle)
* Fewer Particle Flow pileup jets are reconstructed for the same Hard Scatter efficiency (right)

» Particle Flow is a not big fraction of CPU usage in ATLAS reconstruction

 Main motivation to look at Machine Learning is to gain physics performance.
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Machine Learning

ATL-PHYS-PUB-2020-018
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e “LC Topo” (LCW) scheme calibrates individual topoclusters via the Local Hadron Calibration , which is applied
to topocluster inputs prior to input to jet finding - has been used for large radius jet finding in ATLAS.

* Can replace topocluster inputs calibrated to LCW scale with ML calibrated topoclusters.
» Alternative calibration scheme has been studied using Machine Learning (LC)

 Used samples of isolated charged and neutral pions, without pileup. Calorimeter cluster settings are as used
in 2018 data taking conditions.

* Have considered particles with |eta| < 0.7 (uniform detector layout)
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/
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ATL-PHYS-PUB-2020-018

CNN Classifier

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Conv2D x2

MaxPool2D

Flatten
Dense 128

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Flatten

Dense 128

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Conv2D x2
MaxPool2D

Flatten

Dense 128

Densenet
EMB2
EMB3

(rebinned to EMB2)

Flatten

Flatten
Dense 128

Dense 128

Dense 128

Dense 64

* Deep Neutral Network (DNN), Convolutional Neural Network (CNN) and Densely Connected Convolution Network (DenseNet) have been
studied.

e Currently ATLAS LCW scheme uses a Likelihood:

e Classification step using Likelihood ratio, making use of the cluster energy, eta position, longitudinal depth and average cell energy
density.

» Calibration step deploys calorimeter cell signal weighting which depend on cluster energy and location.

* The Machine Learning schemes also do both classification and regression.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/

Machine Learning
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 Combined classification and regression test:
« Compare LCW to combination of CNN Classifier (best) and DNN regression (best)

* High performance of CNN classifier ensures that the correct energy regression is applied in

this mixed particle sample.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/

Machine Learning in Particle Flow

* Ultimate goal would be to replace classical shower subtraction algorithm
with ML approach

 \We know from older studies that used MC truth information to do the
subtraction that there are large potential gains to be had

 Motivation is improved physics performance (fraction of compute
resource usage is very small in ATLAS particle flow).

* As a first step we retrained the topocluster calibration algorithms to

iInstead predict the reconstructed topocluster energy based on the
combined track and topocluster properties.
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Energy Prediction

 Key step in particle flow is to lookup how much energy a charged particle deposited in the calorimeter

 Then one can remove it from the calorimeter measurements and replace with the track
measurement.

* Currently we use single particle Monte Carlo to measure the ratio of matched calorimeter energy to
track energy (e/p), binned in a way (track energy, track eta and calorimeter layer of shower core) to
capture variations.

 Measurement is done with Gaussian fit to e/p distribution.
« Mean and width saved in lookup table

 Then you look up the mean of the e/p and the expected calorimeter energy is e/p multiple by the
track energy. The width is used to quantify whether remaining energy is noise etc.

ML replaces the lookup of the mean only currently - a large part of the project funded by STFC IRIS
was to put in place the complex code to do this. Then should be straightforward to re-use for other
use cases in particle flow.
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Machine Learning in Particle Flow

e Created new software tool that takes the NN inputs as an argument, setup from reco quantities for each track-cluster system, in the
event

e Uses ONNX runtime to run inference and provide a predicted energy deposit for the calorimeter - model in keras was converted
to ONNX. Training code is based on code used for topocluster calibration provided by R. Bates (Triumf).

* Currently validating C++ athena implementation against original keras NN in standalone python (used ROOT tuples for training
and inference) - with help of experts are seeing fewer and fewer differences.

e Standalone setup gives reasonable results (plots are not public).
* Final steps will then be:
e to toggle the energy prediction from the current setup to the new NN setup and compare

e prepare the athena code for a MR into master nightlies (NN off by default, we won’t use this for initial processing in Run 3).

“At CERN in the ATLAS experiment, we have integrated the C++ APl of ONNX Runtime into our software
framework: Athena. We are currently performing inferences using ONNX models especially in the reconstruction
of electrons and muons. We are benefiting from its C++ compatibility, platform*to-ONNX converters (* Keras,

AT L A S TensorFlow, PyTorch, etc) and its thread safety.”

EXPERIMENT

-ATLAS Experiment team, CERN (European Organization for Nuclear Research)
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Conclusions

* Overview of particle flow algorithm and current Run 2 performance shown.
e Different ML models that have been studies were discussed
e Should be new PUB note out soon with even more architectures for calibrations.

 The setup of ML usage in ATLAS particle flow code done in this project puts us
INn a good position to then try out other models for the same task and to use
such models for other tasks in particle flow.

« Ultimate longer term aim will be to decide how much of ATLAS particle flow can
be replaced with ML for Run 4 HL-LHC - generally ATLAS has a plan to evaluate

how much more ML to use and whether to run “classic” algorithms on GPU for
HL-LHC.
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e For the classification problem, shown on the left, all three schemes perform better than the LCW scheme (pEM

 DNN not as good as CNN, Densenet.

* For the regression problem, shown in the right two plots, all three schemes perform better than the LCW scheme.

 DNN gives best resolution and has good linearity.
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