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Outline

● Analysis workflows and the 
Analysis Work package 

● Intersection with WP1: Data 
and workflow management 

● The Analysis Grand Challenges

● Summary and outlook
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Analysis Work Package
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Analysis key points

Physics
Last mile of long chain of data recording and processing. 
Goals: gain insight and create new knowledge

Computing
Analysis workflow (data + software) depends on experiment, analysis group, 
subset of data (signal + relevant backgrounds), analysis iteration. 

Flexibility is paramount.
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Anatomy of an analysis workflow
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Data Formats

Anatomy of an analysis workflow
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ROOT files: standard for input/output
Internally: Experiment/analysis specific

HDF5 npz

pandas datacard

parquet other?



Processing

Anatomy of an analysis workflow
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Event loop vs vectorized processing

Monoliths vs compute graphs

GPU/FPGA capable vs strictly CPU

Parallelizable vs strictly sequential

Time sensitive vs “sometime next week”

Failure tolerance vs all or nothing

Varied resource requirements/efficiency 



The cycle of analysis (an oversimplified view)
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New idea/extension of 
existing work

Publication

create/modify 
code

Run analysis on laptop/cluster/grid

Understand 
results

New ideas for improvement,
mistakes identified, or updates

One cycle as short 
as a day or as long 
as a month



WP1

Analysis step 
output

Work Package 5: Analysis
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Analysis workflow
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Virtual Analysis Facility

Analysis step 
output

Work Package 5: Analysis

WP1
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Analysis workflow

Data lake

Heterogeneous hardware

Specialised hardware 
(GPU, FPGA, etc)

DIRAC

WP5

portability

caching

GPU 
capable

CPU-only
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WP1 ↔ WP5
(in practical terms)
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Scheduling 
with 
coffea-casa
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From coffea-casa docs

Uses Dask and dask-jobqueue

IRIS-HEP has been looking into similar topics

https://coffea-casa.readthedocs.io/en/latest/?badge=latest#
https://github.com/dask/dask-jobqueue


Scheduling 
with DIRAC
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Slide stolen from Janusz’s presentation at the SWIFT-HEP May meeting

In a nutshell: scheduling 
across job management 
systems

Data management system 
for access to data lake 
(here caching)

SWIFT-HEP / GridPP

https://indico.cern.ch/event/1033023/contributions/4351120/attachments/2244732/3806562/ImperialSwiftHep1.pdf


SWIFT-HEP

14

*no relation to IRIS-HEP; **no relation to DIRAC 

“Adaptation”

As simple as adding 

DIRAC jobqueue to 

dask-jobqueue? 

Shared Jupyter-hub 
via iris.ac.uk*

Can run on DiRAC**
Data lake

Virtual analysis facility

https://github.com/dask/dask-jobqueue


Concrete [starting] work items (1)

DiracJob and DiracJobQueueCluster in dask-jobqueue*
● Can use DIRAC command-line tools or python library
● In collaboration with DIRAC experts

○ Sensible defaults
○ Best way to communicate extra requirements (e.g. GPU, cached data)

Work here can then easily be migrated to Parsl and/or tested via joblib by 
volunteers

15*we can start as an independent package and merge later

https://github.com/dask/dask-jobqueue/
https://parsl.readthedocs.io/en/stable/
https://ml.dask.org/joblib.html


Concrete [starting] work items (2)

Storing (temporary) analysis cache on data lake

● Expiration dates: what is maximally reasonable? What makes sense on 
average?

● Permissions: users work in (dynamic) groups - What is the best approach for 
ACLs?

● Xrootd cache: Does it make sense to pre-fill input data based on scheduled 
DIRAC job?
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Analysis Grand Challenges
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Analysis Grand Challenges (IRIS-HEP)
IRIS-HEP are planning to verify work through several analysis grand challenges

Aiming for a realistic workflow, e.g.

● Existing analysis, their example: Higgs → tau tau
● Approx 200 TB of input data, their example: CMS NanoAOD
● Testing performance (speed, resource usage)
● Outputs: statistical inference, tables, control plots, HEP Data
● Other metrics: reproducibility of results (e.g. with REANA)

→ more info IRIS-HEP AGC Tools workshop, 25th of April 2022
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https://reanahub.io/
https://indico.cern.ch/event/1126109/timetable/?view=standard


Analysis Grand Challenges (SWIFT-HEP)
In SWIFT-HEP we can copy the main test with little extra effort* 

But: can we involve analysis groups in the UK?

● Would need to provide documentation on the use of DiracJobQueue
● Need to allocate resources per group
● Need to make sure job wrappers and Analysis Facility monitoring capture all 

metrics (i.e. no additional work for users here)

19*by swapping the dask-jobqueue configuration: HTCondor → DIRAC



Summary 
and 

Outlook

Analysis workflows can be quite 
challenging to optimize for

Collaboration between WP1 and 
WP5 and with IRIS-HEP for 
synergies

We could extend AGCs by including 
the UK community → extra bits 
driven by community

SWIFT-HEP WP5 to start next 
month
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Backup slides
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Analysis workflow example in Dask
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Analysis pipeline example reality might differ
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Filtering Custom 
variables

Custom 
projections

Statistical 
analysisFiltering

Experiment data Custom data? Histograms, tables, etc

Iterative improvements - run 
over the same data with 
(small) changes

● Custom variables might include Machine Learning → training and inference on GPU
● Depending on underlying tools, statistical analysis can benefit from GPUs as well
● Depending on expertise, analysis code might be modular or one big block
● Depending on expertise each iteration will use resources efficiently, or not



Analysis Workflow: compute
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Researcher

Shell/Jupyter/etc

Local computer Local cluster Computing grid
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As analysis needs increase, new expertise is needed to use more 
resources



Analysis 
Challenge

Large user-driven component → 

hard to optimize for every case

Inconsistent data use: new data sets, 
reprocessing of targeted data sets

Ideally, each iteration is as short as 
possible → “time to insight” low

iterative model == waste of 
computing resources?

Emerging trend: interactive analysis
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Jupyter 
notebooks
Analysis “simplified”

These kinds of workflows seem 
really desirable by the current 
generation of PhD students

Shifts a lot of “How to do distributed 
computing” to “What I want to get 
done” → declarative approaches are 
great for research

This disconnection allows experts to 
improve computing infrastructure 
“behind the scenes”
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CERN’s analytix 
cluster

Spark + Hadoop (link)

● Initially for log processing on 
Hadoop

● Can run ROOT analysis on 
Spark

● Accessible via CERN’s SWAN 
service (Jupyter)

● Access to external storage via 

plugin
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https://canali.web.cern.ch/docs/Big_Data_HEP_Analysis_and_ML_with_Spark_20190924.pdf
https://canali.web.cern.ch/docs/Big_Data_HEP_Analysis_and_ML_with_Spark_20190924.pdf


IRIS-HEP 
Coffea-casa

Analysis facility on top of an 
HTCondor cluster (link)

● Dask as a key component

● Uses TLS proxy (Traefik) to 

route requests from outside to 

the Dask cluster

● Dask-jobqueue for submitting 

to batch system (e.g HTCondor)

● More details in next talk
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https://iris-hep.org/projects/coffea-casa.html
https://dask.org/
https://traefik.io/
https://jobqueue.dask.org/en/latest/
https://arxiv.org/pdf/2103.01871.pdf


funcX
Federated function as a service 

(link)

● “Serverless” approach to 

compute (similar to FnProject)

● Reduces barriers to access 

distributed resources

● Low-latency, on-demand

● Can be used to build a catalogue 

of functions

● Functions can be deployed on 

special resources → ”binding 

algorithms to hardware”
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https://funcx.org/
https://fnproject.io/
https://indico.cern.ch/event/781661/contributions/3253622/attachments/1786430/2908700/2019-01-28-FuncX.pdf


Hyper 
(Lux-Zeplin)

non-LHC analysis via Dask on 
HPC and HTC (see talk)
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● Dask as a key component

● Dask-jobqueue for submitting 

to batch system

● Uses boost_histogram, uproot, 

numexpr & more

● Tested on a UK cluster and at 

NERSC

● Example for interactive 

distributed analysis without a 

dedicated analysis facility

“Hyper is an uproot wrapper that 
lets you execute any Python code 
easily in parallel”

https://indico.cern.ch/event/1046405/#6-analysis-with-hyper-a-fast-p
https://dask.org/
https://jobqueue.dask.org/en/latest/
https://github.com/scikit-hep/uproot4


IRIS-HEP
Analysis Grand Challenges 

[AGCs]
(incl. ATLAS, CMS and WLCG)

Multiple challenges in the years 
2022, 2023, 2025, 2027

Analysis: Demonstrate analysis 
system can cope with increased data 
volume while delivering enhanced 
functionality** 

Data volume: realistically sized 
HL-LHC end-user analysis dataset (~ 
200 TB)

Reproducibility and 
Reinterpretation

Interested in getting more 
experiments involved to broaden 
usability 31

Related IRIS-HEP workshop

https://iris-hep.org/grand-challenges.html
https://indico.cern.ch/event/1076231/timetable/?view=standard

