

SwiftHep workshop #3

Plans for a UK analysis challenge

<u>Luke Kreczko</u> for SWIFT-HEP WP5

Outline

 Analysis workflows and the Analysis Work package

 Intersection with WP1: Data and workflow management

• The Analysis Grand Challenges

• Summary and outlook

Analysis Work Package

Analysis key points

Physics

Last mile of long chain of data recording and processing.

Goals: gain insight and create new knowledge

Computing

Analysis workflow (data + software) depends on experiment, analysis group, subset of data (signal + relevant backgrounds), analysis iteration.

Flexibility is paramount.

Anatomy of an analysis workflow

Anatomy of an analysis workflow

Anatomy of an analysis workflow

The cycle of analysis (an oversimplified view)

Analysis workflow

Work Package 5: Analysis

Analysis workflow

Work Package 5: Analysis

WP1 \leftrightarrow WP5

(in practical terms)

Scheduling with coffea-casa

Uses Dask and dask-jobqueue

From coffea-casa docs

Scheduling with DIRAC

In a nutshell: scheduling across job management systems

Data management system for access to data lake (here caching)

DIRAC Schematic (for reference)

Slide stolen from Janusz's presentation at the **SWIFT-HEP May meeting**

SWIFT-HEP

"Adaptation"

As simple as adding DIRAC jobqueue to dask-jobqueue?

*no relation to IRIS-HEP; **no relation to DIRAC

Concrete [starting] work items (1)

DiracJob and DiracJobQueueCluster in dask-jobqueue*

- Can use DIRAC command-line tools or python library
- In collaboration with DIRAC experts
 - Sensible defaults
 - Best way to communicate extra requirements (e.g. GPU, cached data)

Work here can then easily be migrated to <u>Parsl</u> and/or tested via <u>ioblib</u> by volunteers

Concrete [starting] work items (2)

Storing (temporary) analysis cache on data lake

- Expiration dates: what is maximally reasonable? What makes sense on average?
- Permissions: users work in (dynamic) groups What is the best approach for ACLs?
- Xrootd cache: Does it make sense to pre-fill input data based on scheduled DIRAC job?

Analysis Grand Challenges

Analysis Grand Challenges (IRIS-HEP)

IRIS-HEP are planning to verify work through several analysis grand challenges

Aiming for a realistic workflow, e.g.

- Existing analysis, their example: Higgs \rightarrow tau tau
- Approx 200 TB of input data, their example: CMS NanoAOD
- Testing performance (speed, resource usage)
- Outputs: statistical inference, tables, control plots, HEP Data
- Other metrics: reproducibility of results (e.g. with <u>REANA</u>)
- → more info IRIS-HEP AGC Tools workshop, 25th of April 2022

Analysis Grand Challenges (SWIFT-HEP)

In SWIFT-HEP we can copy the main test with little extra effort*

But: can we involve analysis groups in the UK?

- Would need to provide documentation on the use of DiracJobQueue
- Need to allocate resources per group
- Need to make sure job wrappers and Analysis Facility monitoring capture all metrics (i.e. no additional work for users here)

Summary and Outlook

Analysis workflows can be quite challenging to optimize for

Collaboration between WP1 and WP5 and with IRIS-HEP for synergies

We could extend AGCs by including the UK community → extra bits driven by community

SWIFT-HEP WP5 to start next month

Backup slides

Analysis workflow example in Dask

Analysis pipeline example reality might differ

- Custom variables might include Machine Learning → training and inference on GPU
- Depending on underlying tools, statistical analysis can benefit from GPUs as well
- Depending on expertise, analysis code might be modular or one big block
- Depending on expertise each iteration will use resources efficiently, or not

Analysis Workflow: compute

Analysis Challenge

Large user-driven component → hard to optimize for every case

Inconsistent data use: new data sets, reprocessing of targeted data sets

Ideally, each iteration is as short as possible → "time to insight" low

iterative model == waste of computing resources?

Emerging trend: interactive analysis

Jupyter notebooks

Analysis "simplified"

These kinds of workflows seem really desirable by the current generation of PhD students

Shifts a lot of "How to do distributed computing" to "What I want to get done" → declarative approaches are great for research

This disconnection allows experts to improve computing infrastructure "behind the scenes"

CERN's analytix cluster

Spark + Hadoop (<u>link</u>)

Analytics Platform at CERN

- Initially for log processing on Hadoop
- Can run ROOT analysis on Spark
- Accessible via CERN's SWAN service (Jupyter)
- Access to external storage via plugin

IRIS-HEP Coffea-casa

Analysis facility on top of an HTCondor cluster (link)

- <u>Dask</u> as a key component
- Uses TLS proxy (<u>Traefik</u>) to route requests from outside to the Dask cluster
- <u>Dask-jobqueue</u> for submitting to batch system (e.g HTCondor)
- More details in next talk

funcX

Federated function as a service (link)

- "Serverless" approach to compute (similar to <u>EnProject</u>)
- Reduces barriers to access distributed resources
- Low-latency, on-demand
- Can be used to build a catalogue of functions
- Functions can be deployed on special resources → "binding algorithms to hardware"

Hyper (Lux-Zeplin)

non-LHC analysis via Dask on HPC and HTC (see talk)

"Hyper is an <u>uproot</u> wrapper that lets you execute any Python code easily in parallel"

- <u>Dask</u> as a key component
- <u>Dask-jobqueue</u> for submitting to batch system
- Uses boost_histogram, uproot, numexpr & more
- Tested on a UK cluster and at NERSC
- Example for interactive distributed analysis without a dedicated analysis facility

IRIS-HEP

Analysis Grand Challenges
[AGCs]
(incl. ATLAS, CMS and WLCG)

Related IRIS-HEP workshop

2022, 2023, 2025, 2027

Analysis: Demonstrate analysis system can cope with increased data volume while delivering enhanced functionality**

Data volume: realistically sized HL-LHC end-user analysis dataset (~ 200 TB)

Reproducibility and Reinterpretation

Interested in getting more experiments involved to broaden usability