Attacking the Sinh-Gordon model with relativistic
 continuous matrix product states [PRE-TALK INTRODUCTION]

Antoine Tilloy
May 23rd, 2022
Non-perturbative methods in QFT

inzía

The variational method on the lattice

 and basics of tensor network states
Quantum many-body problem on the lattice

Typical many-body problem
N spins on a lattice

$$
\begin{aligned}
& \mathscr{H}=\bigotimes_{j=1}^{n} \mathscr{H}_{j} \text { with } \mathscr{H}_{j}=\mathbb{C}^{2} \\
& |\psi\rangle=\sum c_{i}, i_{2}, \cdots, i_{n}\left|i_{1}, i_{2}, \cdots i_{N}\right\rangle
\end{aligned}
$$

Problem:

Finding the low energy states of

$$
H=\sum_{k=1}^{N} h_{k}
$$

is hard because $\operatorname{dim} \mathscr{H}=2^{N}$ for spins

Fugaku - 2 EFLOPS - 150 PB cannot do $4 \times 4 \times 4$ spins

Variational optimization

Generic (spin $1 / 2$) state $\in \mathscr{H}$:

$$
|\psi\rangle=\sum_{i_{1}, i_{2}, \cdots, i_{n}} c_{i_{1}, i_{2}, \cdots, i_{N}}\left|i_{1}, \cdots, i_{N}\right\rangle
$$

Exact variational optimization

To find the ground state:

$$
|0\rangle=\min _{|\psi\rangle \in \mathscr{H}} \frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

- $\operatorname{dim} \mathscr{H}=2^{N}$

Variational optimization

Generic $(\operatorname{spin} 1 / 2)$ state $\in \mathscr{H}$:

$$
|\psi\rangle=\sum_{i_{1}, i_{2}, \cdots, i_{n}} c_{i_{1}, i_{2}, \cdots, i_{N}}\left|i_{1}, \cdots, i_{N}\right\rangle
$$

Approx. variational optimization

To find the ground state:

$$
|0\rangle=\min _{|\psi\rangle \in \mathscr{M}} \frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

- $\operatorname{dim} \mathscr{M} \propto \operatorname{Poly}(N)$ or fixed

Interesting states are weakly entangled

Low energy state
$|\psi\rangle=|0\rangle$ or $|1\rangle$

Reduced density
matrix
$\rho=\operatorname{tr}_{\mathcal{D}^{c}}[|\psi\rangle\langle\psi|]$
Entanglement entropy
$S=-\operatorname{tr}[\rho \log \rho]$
D'
Area law

$$
S \propto|\partial \mathcal{D}|
$$

Interesting states are weakly entangled

Low energy state
$|\psi\rangle=|0\rangle$ or $|1\rangle$

Reduced density
matrix
$\rho=\operatorname{tr}_{\mathcal{D}^{c}}[|\psi\rangle\langle\psi|]$
Entanglement entropy
$S=-\operatorname{tr}[\rho \log \rho]$
Area law
$S \propto|\partial \mathcal{D}|$

Typical states are strongly entangled

Random state

$|\psi\rangle=U_{\text {Haar }} \mid$ trivial \rangle

Reduced density matrix

$$
\rho=\operatorname{tr}_{\mathcal{D}^{c}}[|\psi\rangle\langle\psi|]
$$

Entanglement entropy $S=-\operatorname{tr}[\rho \log \rho]$

Volume law

$$
S \propto|\mathcal{D}|
$$

The solution in $1+1$: Matrix Product States (MPS)

Definition

A MPS for a translation invariant chain of N qudits $\left(\mathbb{C}^{d}\right)$ with periodic boundary conditions is a state

$$
|\psi(A)\rangle:=\sum_{i_{1}, i_{2}, \ldots, i_{N}} \operatorname{tr}\left[A_{i_{1}} A_{i_{2}} \cdots A_{i_{N}}\right]\left|i_{1}, i_{2}, \ldots, i_{N}\right\rangle
$$

where A_{0}, A_{1} are 2 matrices $\in \mathcal{M}_{D}(\mathbb{C})$.

- The matrices A_{i} for $i=1 \ldots d$ are the free parameters
- The size D of the matrices is the bond dimension (quantifies freedom)
- Correlation functions (and $\langle H\rangle$) efficiently computable
- Entanglement entropy verifies Area Law
- Optimizable with improvements of gradient descent

Some facts

1 spatial dimension

Theorems (colloquially)

1. For gapped H, tensor network states $|A\rangle$ approximate well $|0\rangle$ as D increases
2. All $|A\rangle$ are ground states of local gapped H
$\geqslant 2$ spatial dimension

Folklore

1. For gapped H, tensor network states $|A\rangle$ approximate well $|0\rangle$ as D increases
2. Most $|A\rangle$ are ground states of local gapped H

The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)

$$
|\Psi\rangle=\sum_{i_{1}, i_{2}, \cdots, i_{N}} c_{i_{1} i_{2} \cdots i_{N}}\left|i_{1} i_{2} \cdots i_{N}\right\rangle \quad \longrightarrow \quad|\Psi\rangle=\int \mathcal{D} \phi \psi(\phi)|\phi\rangle
$$

New problem: $2^{N} \quad \mathbb{C}$-parameters $\rightarrow \operatorname{dim} \mathscr{H}=\infty^{\infty}$ even at finite size!
Question Can one compress ∞^{∞} down to a manageable number of parameters?

Attacking the Sinh-Gordon model with relativistic continuous matrix product states

Antoine Tilloy
May 23rd, 2022
Non-perturbative methods in QFT

Cnzía

Quantum field theory: general objective

Long term goal
Find methods to solve "real world" quantum field theories (even without structure) to good (machine?) precision

Quantum field theory: general objective

Long term goal

Find methods to solve "real world" quantum field theories (even without structure) to good (machine?) precision

Go beyond the currently leading approaches

1. Perturbation theory \leftarrow need resummation / expensive large orders
2. Lattice Monte Carlo \leftarrow need discretization / slow convergence of error / sign

Quantum field theory: general objective

Long term goal

Find methods to solve "real world" quantum field theories (even without structure) to good (machine?) precision

Go beyond the currently leading approaches

1. Perturbation theory \leftarrow need resummation / expensive large orders
2. Lattice Monte Carlo \leftarrow need discretization / slow convergence of error / sign

3 promising alternatives

1. Bootstrap (?)
2. Renormalization group \leftarrow functional or tensor network RG
3. Variational method \leftarrow Hamiltonian truncation or tensor network states

Variational method and RCMPS

In $1+1$ dimensions, relativistic continuous matrix product states are an ansatz with few parameters to efficiently find ground states and compute observables [arXiv:2102.07733 and arXiv:2102.07741]

$$
|Q, R\rangle=\operatorname{tr}\left\{\mathcal{P} \exp \left[\int \mathrm{d} x Q \otimes \mathbb{1}+R \otimes a^{\dagger}(x)\right]\right\}|0\rangle_{a}
$$

Variational method and RCMPS

In $1+1$ dimensions, relativistic continuous matrix product states are an ansatz with few parameters to efficiently find ground states and compute observables [arXiv:2102.07733 and arXiv:2102.07741]

$$
|Q, R\rangle=\operatorname{tr}\left\{\mathcal{P} \exp \left[\int \mathrm{d} x Q \otimes \mathbb{1}+R \otimes a^{\dagger}(x)\right]\right\}|0\rangle_{a}
$$

- No explicit UV or IR cutoff needed
- Works well on ϕ_{2}^{4} (super poly precision)

Variational method and RCMPS

In $1+1$ dimensions, relativistic continuous matrix product states are an ansatz with few parameters to efficiently find ground states and compute observables [arXiv:2102.07733 and arXiv:2102.07741]

$$
|Q, R\rangle=\operatorname{tr}\left\{\mathcal{P} \exp \left[\int \mathrm{d} x Q \otimes \mathbb{1}+R \otimes a^{\dagger}(x)\right]\right\}|0\rangle_{a}
$$

- No explicit UV or IR cutoff needed
- Works well on ϕ_{2}^{4} (super poly precision)

Useful next steps: extend to fermions, gauge theories, $2+1$ and $3+1$ dim
What I did: look at the Sinh-Gordon model because it is weird and controversial

The Sinh-Gordon model

An exactly solvable model that is surprisingly subtle. Two recent studies

- Könik, Lájer, and Mussardo [KLM] arXiv:2007.00154
- Bernard and LeClair [BLC] arXiv:2112.05490

The Sinh-Gordon model

An exactly solvable model that is surprisingly subtle. Two recent studies

- Könik, Lájer, and Mussardo [KLM] arXiv:2007.00154
- Bernard and LeClair [BLC] arXiv:2112.05490

[Equal-time quantization] Hamiltonian definition

$$
H_{\mathrm{ShG}}(\beta)=\int \mathrm{d} x \frac{: \pi^{2}:_{m}}{2}+\frac{:(\nabla \phi)^{2}:_{m}}{2}+\frac{m^{2}}{\beta^{2}}: \cosh (\beta \phi):_{m}
$$

[Radial quantization] Dilation operator definition

$$
D_{\mathrm{ShG}}(b)=D_{0}+\mu \int_{C} \mathrm{~d} z\left[\mathcal{V}_{b}\left(z, z^{*}\right)+\mathcal{V}_{-b}\left(z, z^{*}\right)\right]
$$

Equivalent formulations with $b=\beta / \sqrt{8 \pi}$ and $\mu=\frac{m^{2}+2 b^{2}}{2^{4+2 b^{2}} \pi b^{2}} e^{2 b^{2}} \gamma_{E}$

The Sinh-Gordon model: puzzles

$$
H_{\mathrm{ShG}}(\beta)=\int \mathrm{d} x \frac{: \pi^{2}:_{m}}{2}+\frac{:(\nabla \phi)^{2}:_{m}}{2}+\frac{m^{2}}{\beta^{2}}: \cosh (\beta \phi):_{m}
$$

Should be easy:

1. Intuitively should always make sense $(\cosh (\beta \phi)$ always relevant)
2. S-matrix, energy density, masses, vertex operators, "exactly" known
3. Apparent $b \rightarrow b^{-1}$ duality with normalized coupling $b=\beta / \sqrt{8 \pi}$

The Sinh-Gordon model: puzzles

$$
H_{\mathrm{ShG}}(\beta)=\int \mathrm{d} x \frac{: \pi^{2}:_{m}}{2}+\frac{:(\nabla \phi)^{2}:_{m}}{2}+\frac{m^{2}}{\beta^{2}}: \cosh (\beta \phi):_{m}
$$

Should be easy:

1. Intuitively should always make sense ($\cosh (\beta \phi)$ always relevant)
2. S-matrix, energy density, masses, vertex operators, "exactly" known
3. Apparent $b \rightarrow b^{-1}$ duality with normalized coupling $b=\beta / \sqrt{8 \pi}$

But unclear what the domain of validity of the formula is...

- Mass vanishes at $b=1$ and likely stays at 0 [KLM and BLC]
- Likely no self-duality
- Could the exact formula break down before $b=1$?
- Very hard to check numerically (despite thorough exploration of KLM)

Outline

1. The variational method in the continuum
2. Relativistic continuous matrix product states (RCMPS)
3. Warm-up with ϕ_{2}^{4} and $\cos (\beta \phi)$
4. $\cosh (\beta \phi)$ numerics
5. Some lessons

The variational method
in the continuum

The direct compression approach

Variational method for ground state search

1. Guess a manifold $\mathcal{M} \subset \mathscr{H}$ with few parameters v i.e. $\operatorname{dim} \mathcal{M} \ll \operatorname{dim} \mathscr{H}$
2. Tune v to minimize energy $v=\operatorname{argmin}_{v \in \mathcal{M}} \frac{\langle v| H|v\rangle}{\langle v \mid v\rangle}$ and get \mid ground state $\rangle \simeq|v\rangle$

The direct compression approach

Variational method for ground state search

1. Guess a manifold $\mathcal{M} \subset \mathscr{H}$ with few parameters v i.e. $\operatorname{dim} \mathcal{M} \ll \operatorname{dim} \mathscr{H}$
2. Tune v to minimize energy $v=\operatorname{argmin}_{v \in \mathcal{M}} \frac{\langle v| H|v\rangle}{\langle v \mid v\rangle}$ and get |ground state $\rangle \simeq|v\rangle$

Reason for compression (classical)

cat image
atypical \Longrightarrow compressible

Reason for compression (quantum)

low energy state
random state
area law $=$ atypical \Longrightarrow compressible

Feynman's criticism

Difficulties in Applying the Variational
 Principle to Quantum Field Theories ${ }^{1}$

so I tried to do something along these lines with quantum chromodynamics. So I'm talking on the subject of the application of the variational principle to field theoretic problems, but in particular to quantum chromodynamics.

I'm going to give away what I want to say, which is that I didn't get anywhere! I got very discouraged and I think I can see why the variational principle is not very useful. So I want to take, for the sake of argument, a very strong view which is stronger than I really believe - and argue that it is no damn good at all!

Feynman's requirement in a nutshell

1. Extensive parameterization

Number of parameters $\propto L^{\alpha}$ at most for system size $L\left(\right.$ not $\left.\propto e^{L}\right)$
2. Computable expectation values
ψ known $\Longrightarrow\langle\mathcal{O}(x) \mathcal{O}(y)\rangle_{\psi}$ computable

3. Not oversensitive to the UV

no runaway minimization where higher and higher momenta get fitted

Elegantly swallowing the bullet

Example: naive Hamiltonian truncation

With an IR cutoff L, momenta are discrete. Take as submanifold \mathscr{M} the vector space spanned by:

$$
\left|k_{1}, k_{2}, \cdots, k_{r}\right\rangle=a_{k_{1}}^{\dagger} a_{k_{2}}^{\dagger} \cdots a_{k_{r}}^{\dagger}|0\rangle_{a}
$$

such that $\left\langle k_{1} k_{2} \cdots k_{r}\right| H\left|k_{1} k_{2} \cdots k_{r}\right\rangle \leqslant E_{\text {trunc }} \rightarrow$ finite dimensional

Breaks extensiveness

- number of parameters $\propto e^{L \times E_{\text {trunc }}}$
- error $\propto E_{\text {trunc }}^{-3}$ (with renormalization refinements)
still good results, see e.g. Rychkov \& Vitale for ϕ_{2}^{4} arXiv:1412.3460

Intuition

1- Extensive parameterization and 2- Computable expectation values
Realized by tensor network states on the lattice e.g. in $1+1$ dimensions: Matrix Product states (MPS)

$$
|\psi(A)\rangle:=\sum_{i_{1}, i_{2}, \ldots, i_{N}} \operatorname{tr}\left[A_{i_{1}} A_{i_{2}} \cdots A_{i_{N}}\right]\left|i_{1}, i_{2}, \ldots, i_{N}\right\rangle
$$

where A_{i} are matrices $\in \mathcal{M}_{D}(\mathbb{C})$

3- Not oversensitive to the UV
Realized by Hamiltonian truncation, i.e. working in the Fock basis

$$
\left|k_{1}, k_{2}, \cdots, k_{r}\right\rangle=a_{k_{1}}^{\dagger} a_{k_{2}}^{\dagger} \cdots a_{k_{r}}^{\dagger}|0\rangle_{a}
$$

Intuition

1- Extensive parameterization and 2- Computable expectation values
Realized by tensor network states on the lattice e.g. in $1+1$ dimensions: Matrix Product states (MPS)

$$
|\psi(A)\rangle:=\sum_{i_{1}, i_{2}, \ldots, i_{N}} \operatorname{tr}\left[A_{i_{1}} A_{i_{2}} \cdots A_{i_{N}}\right]\left|i_{1}, i_{2}, \ldots, i_{N}\right\rangle
$$

where A_{i} are matrices $\in \mathcal{M}_{D}(\mathbb{C})$

3- Not oversensitive to the UV
Realized by Hamiltonian truncation, i.e. working in the Fock basis

$$
\left|k_{1}, k_{2}, \cdots, k_{r}\right\rangle=a_{k_{1}}^{\dagger} a_{k_{2}}^{\dagger} \cdots a_{k_{r}}^{\dagger}|0\rangle_{a}
$$

Strategy: MPS $\underset{\text { continuum limit }}{\longrightarrow}$ CMPS (2010) $\underset{\text { change of basis }}{\longrightarrow}$ RCMPS (2021)

Relativistic continuous matrix product states (RCMPS)

Relativistic continuous matrix product states

RCMPS: A variational ansatz to solve $1+1 d$ relativitic QFT without discretization or cutoff and to (in principle) arbitrary precision

Definition

RCMPSs are a manifold of states parameterized by $2(D \times D)$ matrices Q, R

$$
|Q, R\rangle=\operatorname{tr}\left\{\mathcal{P} \exp \left[\int \mathrm{d} x Q \otimes \mathbb{1}+R \otimes \mathrm{a}^{\dagger}(x)\right]\right\}|0\rangle_{a}
$$

with

- $a(x)=\frac{1}{2 \pi} \int d k e^{i k x} a_{k}$ where $a_{k}=\frac{1}{\sqrt{2}}\left(\sqrt{p^{2}+m^{2}} \hat{\phi}(p)+i \frac{\hat{\pi}(p)}{\sqrt{p^{2}+m^{2}}}\right)$
- trace taken over \mathbb{C}^{D}
- \mathcal{P} path-ordering exponential

Basic properties of RCMPS

$$
|Q, R\rangle=\operatorname{tr}\left\{\mathcal{P} \exp \left[\int \mathrm{d} x Q \otimes \mathbb{1}+R \otimes \mathrm{a}^{\dagger}(x)\right]\right\}|0\rangle_{a}
$$

Feynman's checklist:

1. Extensive because of $\mathcal{P} \exp \int$
2. Obervables computable at cost D^{3} (non trivial!) requires $\left[a(x), a^{\dagger}(y)\right]=\delta(x-y)$
3. No UV problems
$|0,0\rangle=|0\rangle_{a}$ is the ground state of H_{0} hence exact CFT UV fixed point $\langle Q, R|: P(\phi):|Q, R\rangle$ is finite for all Q, R (not trivial!)

The variational algorithm

Procedure:
Compute $e_{0}=\langle Q, R| h|Q, R\rangle$ and $\nabla_{Q, R} e_{0}$
Minimize e_{0} with TDVP (essentially Riemannian gradient descent)

The variational algorithm

Procedure:

Compute $e_{0}=\langle Q, R| h|Q, R\rangle$ and $\nabla_{Q, R} e_{0}$
Minimize e_{0} with TDVP (essentially Riemannian gradient descent)

Computations of e_{0} and ∇e_{0} in a nutshell:

1. $V_{b}=\left\langle: e^{b \phi(x)}:\right\rangle_{Q R}$ computable by solving an ODE with cost $\propto D^{3}$
2. $\left\langle: \phi^{n}:\right\rangle_{Q R}$ computable doing $\left.\partial_{b}^{n} V_{b}\right|_{b=0} \rightarrow \propto D^{3}$
3. $e_{0}=\langle h\rangle_{Q R}$ computable by summing such terms at cost $D^{3} \rightarrow \propto D^{3}$
4. ∇e_{0} computable by solving the adjoint ODE (backpropagation) $\rightarrow \propto D^{3}$

The variational algorithm

Procedure:

Compute $e_{0}=\langle Q, R| h|Q, R\rangle$ and $\nabla_{Q, R} e_{0}$
Minimize e_{0} with TDVP (essentially Riemannian gradient descent)

Computations of e_{0} and ∇e_{0} in a nutshell:

1. $V_{b}=\left\langle: e^{b \phi(x)}:\right\rangle_{Q R}$ computable by solving an ODE with cost $\propto D^{3}$
2. $\left\langle: \phi^{n}:\right\rangle_{Q R}$ computable doing $\left.\partial_{b}^{n} V_{b}\right|_{b=0} \rightarrow \propto D^{3}$
3. $e_{0}=\langle h\rangle_{Q R}$ computable by summing such terms at cost $D^{3} \rightarrow \propto D^{3}$
4. ∇e_{0} computable by solving the adjoint ODE (backpropagation) $\rightarrow \propto D^{3}$

Functioning Julia implementation. OptimKit.jl to solve the Riemannian minimization, KrylovKit. jl to solve fixed point equations,
DifferentialEquations.jl (Vern7 solver) to solve ODE. Soon Rcmps.jl?

Warmup with ϕ_{2}^{4} and $\cos (\beta \phi)$

Hamiltonian definition of ϕ_{2}^{4}

Renormalized ϕ_{2}^{4} theory

$$
H=\int \mathrm{d} x \frac{: \pi^{2}:_{m}}{2}+\frac{:(\nabla \phi)^{2}:_{m}}{2}+\frac{m^{2}}{2}: \phi^{2}:_{m}+g: \phi^{4}:_{m}
$$

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy ε_{0} density finite
3. Difficult to solve unless $g \ll m^{2}$ (perturbation theory)
4. Phase transition around $f_{c}=\frac{g}{4 m^{2}}=11$ i.e. $g \simeq 2.7$ in mass units

Results: ϕ_{2}^{4} energy density

Results: ϕ_{2}^{4} - field expectation value $\langle\phi\rangle$

Hamiltonian definition of Sine-Gordon theory

Renormalized $\cos (\beta \phi)$ theory

$$
H=\int \mathrm{d} x \frac{: \pi^{2}:_{m}}{2}+\frac{:(\nabla \phi)^{2}:_{m}}{2}-\frac{m^{2}}{\beta^{2}}: \cos (\beta \phi):_{m}
$$

1. Well defined for $b=\beta / \sqrt{8 \pi}<1 / \sqrt{2}$
2. Ground energy density $\rightarrow-\infty$ for $b \rightarrow 1 / \sqrt{2}$ but renormalizable until $b=1$
3. Vertex operators, mass spectrum, and (renormalized) energy known exactly

Results: $\cos (\beta \phi) \quad$ (rescaled) energy density

Fits arbitrarily well for $b \in[0,1 / \sqrt{2}[$, collapses to $-\infty$ for b larger

Results: $\cos (\beta \phi) \quad$ (rescaled) energy density

Fits arbitrarily well for $b \in[0,1 / \sqrt{2}[$, collapses to $-\infty$ for b larger Numerically refines Coleman's argument from $b=1$ to $b=1 / \sqrt{2}+\epsilon(D)$

Getting serious with $\cosh (\beta \phi)$

The Sinh-Gordon model

Renormalized Hamiltonian of $\cos (\beta \phi)$ theory

$$
H=\int \mathrm{d} x \frac{: \pi^{2}:_{m}}{2}+\frac{:(\nabla \phi)^{2}:_{m}}{2}+\frac{m^{2}}{\beta^{2}}: \cosh (\beta \phi):_{m}
$$

1. Constructed rigorously by Fröhlich and Park for $b=\beta / \sqrt{8 \pi}<1 / \sqrt{2}$
2. No value of b at which the potential is obviously ill-defined
3. Analytical results for all $b \geqslant 0$, likely valid only for $b \leqslant 1$ (or even just $b \leqslant 1 / \sqrt{2}$?)
4. Conjectured to be massless for $b \geqslant 1$ by KLM and BLC
5. One can try RCMPS for all $b \geqslant 0$

Results: (rescaled) energy density

Results: vertex operators $\left\langle: e^{a \varphi}:\right\rangle$

Known exactly from FLZZ formula up to $a=\left(b+b^{-1}\right) / 2$ (Seiberg bound)

Results: 2-point func $\left\langle: e^{a \varphi(x)}:: e^{a \varphi(0)}:\right\rangle-\left\langle: e^{a \varphi(x)}:\right\rangle\left\langle: e^{a \varphi(0)}:\right\rangle$

Discussion and open problems

Understanding expressiveness of RCMPS

Standard Entanglement Entropy

Defined for "standard" locality

$$
\rho_{\geqslant 0}=\int \prod_{x \leqslant 0} \mathrm{~d} \phi(x)\langle\phi \mid \Psi\rangle\langle\Psi \mid \phi\rangle
$$

Gives $S_{1}=-\operatorname{tr}\left(\rho_{\geqslant 0} \log \rho_{\geqslant 0}\right) \propto \log (\Lambda)$

Understanding expressiveness of RCMPS

Standard Entanglement Entropy

Defined for "standard" locality

$$
\rho_{\geqslant 0}=\int \prod_{x \leqslant 0} \mathrm{~d} \phi(x)\langle\phi \mid \Psi\rangle\langle\Psi \mid \phi\rangle
$$

Gives $S_{1}=-\operatorname{tr}\left(\rho_{\geqslant 0} \log \rho_{\geqslant 0}\right) \propto \log (\Lambda)$

Exotic Entanglement Entropy

Defined for RCMPS notion of locality trace over $a^{\dagger}\left(x_{1}\right) \cdots a^{\dagger}\left(x_{n}\right)|0\rangle_{m}$ for $x_{k} \leqslant 0$
Gives $S_{1}=O(1)$ (numerically)

EEE is finite at least for

$$
b \leqslant 1 / \sqrt{2}
$$

Sinh-Gordon theory: what do we know?

Still uncertainty, following KLM, BLC, and the present study...
Personnally think

1. 99% chance: Hamiltonian H has no self-duality $b \rightarrow b^{-1}$
2. 80% chance: Any reasonable definition of the model is massless for $b \geqslant 1$
3. 70% chance: Energy formula correct for $b \in[0,1]$, and $\varepsilon_{0}=0$ for $b \geqslant 1$.
4. 50% chance: FLZZ formula correct for all $a \geqslant\left(b+b^{-1}\right) / 2$
5. 50% chance: The model makes sense, without renormalization, for $b \leqslant 1$
6. 50% confidence: UV fixed point does not change for $b \geqslant 1$

Open problems: rigorously construct the model for $b \geqslant 1 / \sqrt{2} /$ Find if it has an entanglement phase transition

Todo-list for continuous tensor networks

In $1+1$ dimensions

- Solve Fermion / Gauge theories
- Go into the $b \geqslant 1 / \sqrt{2}$ of Sine-Gordon
- Do general CFT perturbations

Todo-list for continuous tensor networks

In $1+1$ dimensions

- Solve Fermion / Gauge theories
- Go into the $b \geqslant 1 / \sqrt{2}$ of Sine-Gordon
- Do general CFT perturbations

Remaining objectives do higher dimensions!

	non-relativistic	relativistic	critical
$d=1$ space	Verstraete-Cirac 2010	AT 2021	
$d \geqslant 2$ space	AT-Cirac		
	2019		

Summary

$$
|Q, R\rangle=\operatorname{tr}\left\{\mathcal{P} \exp \left[\int \mathrm{d} x Q \otimes \mathbb{1}+R \otimes \mathrm{a}^{\dagger}(x)\right]\right\}|0\rangle_{a}
$$

1. Ansatz for $1+1$ relativistic QFT
2. No cutoff, UV or IR, extensive, computable
3. Efficient (cost poly D, error $1 /$ superpoly D)
4. Rigorous (variational)
5. Works well for ϕ_{2}^{4}, Sine-Gordon, and Sinh-Gordon at $b \leqslant 1 / \sqrt{2}$
