BESIII track finding algorithm based on edge-classifying GNN

Mini-workshop on graph neural networks for tracking
3 June 2022

Xiaoqian Jia, Xiaoshuai Qin, Teng Li, Xingtao Huang, Xueyao Zhang
Shandong University, China
Outline

- Motivation
- Pattern map based on MC simulation
- Graph construction method
- Edge classification
- Track building
- Summary
Charged particle tracking at BESIII

- Beijing electron-positron collider (BEPCII)
 - Peak luminosity: 10^{33} cm$^{-2}$ s$^{-1}$
 - CMS: 2.0 - 4.95 GeV, τ -charm region
- Beijing Spectrometer (BESIII)
 - Study the electroweak and strong interactions
 - Search for new physics
- Main Drift Chamber (MDC)
 - 43 sense wire layers
 - dE/dx resolution: 6%
 - Momentum resolution: 0.5%@1GeV/c
- Tracking finding for low P_T tracks is still challenging for traditional methods (e.g. pattern recognition)
Graph Neural Networks (GNNs)

- GNN has great potential to boost tracking efficiency

- Basic working principle:
 - **Graph**
 - A graph is composed of nodes and edges presented in an adjacency matrix
 - **Node embedding**
 - Encode nodes so that similarity in the embedding space approximates similarity in the graph
 - **Message passing**
 - Aggregate information from neighboring nodes across edges to form new features on each node
 - Learn the node embeddings by iteratively combining the node information in a local neighborhood
Tracking based on edge-classifying GNN

MC simulation
Charged particles leave hits in the MDC

Pattern Map
(A set of possible hit neighbour combinations)

Construct the graph based on the Pattern Map

Build track candidates

Classify the graph edges

High classification score
→the edge belongs to a true particle track

Low classification score
→it is a spurious or noise edge

Track fitting
Pattern Map based on MC simulation

To reduce the number of fake edges during graph construction based on MC simulation

◆ Definition of valid neighbors
 • Hits on the same layer
 - Two adjacent signal wires on the left and right
 • Hits on the next layer
 - The collection of sense wires that could potentially represent two successive hits on a track

◆ MC sample used to build pattern map
 • Two million single tracks from BESIII MC truth information
 • 10 charged particles (e^\pm, K^\pm, μ^\pm, p^\pm, π^\pm)
 • $0.05\text{GeV}/c < P < 3\text{GeV}/c$

◆ To reduce the size of the graphs, the Pattern Map is further reduced based on a probability cut
Graph construction

◆ Training sample
 • Single-particle ($e^\pm, K^\pm, \mu^\pm, p^\pm, \pi^\pm$) MC sample
 • $0.2 \text{ GeV/c} < p < 3.0 \text{ GeV/c}$
 • Mixed with BESIII random trigger data as background (~45% hits)
 • Train: Validation: Test = 4: 1: 1
◆ Edge assignment based on Pattern Map
 • Hit with its neighbors on the same layer
 • Hit with its neighbors on the next layer
 • Hit with its neighbors' neighbors on one layer apart
◆ Node features
 • Raw drift time
 • Position coordinates (x, y) of the sense wires
◆ The final graph representation:
 • Node features, adjacency matrices, edge labels
GNN edge Classifier based on PyTorch

- **Input network**
 - Node features embedded in latent space
- **Graph model**
 - Node network and Edge network
 - 8 graph iterations
 - MLPs
 - Tanh activation

~99.5% classification accuracy (threshold = 0.7)

arXiv: 1810.06111
Preliminary track building method

- Events with single tracks
 - Build the longest track
 - Connect true edges which form the longest track
 - Maximum classification score
 - Connect edges with the highest classification score
Preliminary results

◆ Test sample
 • Single-particle MC event sample
 • Mixed with BESIII random trigger data as background (~45% hits)
 • $0.2 \text{ GeV/c} < p < 3.0 \text{ GeV/c}$

◆ Hit selection performance
 • The preliminary results show that GNN provides high efficiency and purity of hits selection
 • Efficiency: Selected true hits / Total true hits
 • purity : Selected true hits / Total selected hits
Preliminary results

- Track reconstruction efficiency
 - Perfect / Tight / loose match efficiency: the number of reconstructed tracks containing over 100% / 75% / 50% of hits from the same particle, divided by the total number of particles

The threshold determination method shows much better performance
Preliminary results

- To evaluate the tracking performance, track fitting algorithm based on Genfit (a Generic Track-Fitting Toolkit) is used to reconstruct the particle momentum.
- Particle reconstructed performance:
 - Good resolution performance can be obtained.

https://github.com/GenFit/GenFit
Summary

◆ A track finding algorithm prototype based on edge-classifying GNN at BESIII is under development
 • A graph construction algorithm based on a hit pattern map is studied
 • GNN model is studied and tested to distinguish true hits on track from fake hits
 • Preliminary track building method is studied
◆ Preliminary results on BESIII MC data shows promising performance
◆ Outlook
 • Further optimization of the model is needed
 To boost performance for low P_T tracks
 • Advanced track building algorithms is needed for multi-track events
 e.g. clustering with unsupervised learning