

BESIII track finding algorithm based on edge-classifying GNN

Mini-workshop on graph neural networks for tracking

3 June 2022

Xiaoqian Jia, Xiaoshuai Qin, Teng Li, Xingtao Huang, Xueyao Zhang Shandong University, China

Outline

- Motivation
- Pattern map based on MC simulation
- Graph construction method
- Edge classification
- Track building
- Summary

Charged particle tracking at BESIII

- ◆ Beijing electron-positron collider (BEPCII)
 - Peak luminosity: 10³³cm⁻² s ⁻¹
 - CMS: 2.0 4.95 GeV, τ -charm region
- Beijing Spectrometer (BESIII)
 - Study the electroweak and strong interactions
 - Search for new physics
- Main Drift Chamber (MDC)
 - 43 sense wire layers
 - dE/dx resolution: 6%
 - Momentum resolution: 0.5%@1GeV/c
- ◆ Tracking finding for low P_T tracks is still challenging for traditional methods (e.g. pattern recognition)

Aerial view of the BEPCII

Graph Neural Networks (GNNs)

- GNN has great potential to boost tracking efficiency
- Basic working principle:
 - Graph
 - A graph is composed of nodes and edges presented in an adjacency matrix
 - Node embedding
 - Encode nodes so that similarity in the embedding space approximates similarity in the graph
 - Message passing
 - Aggregate information from neighboring nodes across edges to form new features on each node
 - Learn the node embeddings by iteratively combining the node information in a local neighborhood

Tracking based on edge-classifying GNN

MC simulation Charged particles leave hits in the MDC

Build track candidates

Classify the graph edges

Low classification score

→it is a spurious or noise edge

Pattern Map based on MC simulation

To reduce the number of fake edges during graph construction based on MC simulation

- Definition of valid neighbors
 - Hits on the same layer
 - Two adjacent signal wires on the left and right
 - Hits on the next layer
 - The collection of sense wires that could potentially represent two successive hits on a track
- ◆ MC sample used to build pattern map
 - Two million single tracks from BESIII MC truth information
 - 10 charged particles (e[±], K[±], μ[±], p[±], π[±])
 - 0.05GeV/c < P < 3GeV/c
- ◆ To reduce the size of the graphs, the Pattern Map is further reduced based on a probability cut

Graph construction

- ◆ Training sample
 - Single-particle (e $^{\pm}$, K $^{\pm}$, μ^{\pm} , p $^{\pm}$, π^{\pm}) MC sample
 - 0.2 GeV/c
 - Mixed with BESIII random trigger data as background (~45% hits)
 - Train: Validation: Test = 4: 1: 1
- Edge assignment based on Pattern Map
 - Hit with its neighbors on the same layer
 - Hit with its neighbors on the next layer
 - Hit with its neighbors' neighbors on one layer apart
- Node features
 - Raw drift time
 - Position coordinates (x, y) of the sense wires
- ◆ The final graph representation:
 - Node features, adjacency matrices, edge labels

GNN edge Classifier based on PyTorch

- ◆ Input network
 - Node features embedded in latent space
- ◆ Graph model
 - Node network and Edge network
 - 8 graph iterations
 - MLPs
 - Tanh activation

~99.5% classification accuracy (threshold = 0.7)

Preliminary track building method

- Events with single tracks
 - Build the longest track
 - Connect true edges which form the longest track
 - Maximum classification score
 - Connect edges with the highest classification score

Preliminary results

- ◆ Test sample
 - Single-particle MC event sample
 - Mixed with BESIII random trigger data as background (~45% hits)
 - 0.2 GeV/c
- ◆ Hit selection performance
 - The preliminary results show that GNN provides high efficiency and purity of hits selection
 - Efficiency: Selected true hits / Total true hits
 - purity: Selected true hits / Total selected hits

Preliminary results

- ◆ Track reconstruction efficiency
 - Perfect / Tight / loose match efficiency: the number of reconstructed tracks
 containing over 100% / 75% / 50% of hits from the same particle, divided by the total
 number of particles

The threshold determination method shows much better performance

Preliminary results

◆ To evaluate the tracking performance, track fitting algorithm based on Genfit (a Generic Track-Fitting Toolkit) is used to reconstruct the particle momentum

| https://github.com/GenFit/GenFit

◆ Particle reconstructed performance

Good resolution performance can be obtained

Summary

- A track finding algorithm prototype based on edge-classifying GNN at BESIII is under development
 - A graph construction algorithm based on a hit pattern map is studied
 - GNN model is studied and tested to distinguish true hits on track from fake hits
 - Preliminary track building method is studied
- ◆ Preliminary results on BESIII MC data shows promising performance
- ◆ Outlook
 - Further optimization of the model is needed
 To boost performance for low P_T tracks
 - Advanced track building algorithms is needed for multi-track events
 e.g. clustering with unsupervised learning

