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HETEROGENEOUS GRAPH NEURAL NETWORKS
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HETEROGENEOUS GRAPH NEURAL NETWORKS
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A TYPICAL FRIEND NETWORK

𝐹𝑜𝑜𝑑 ∈ 𝑅𝑁

𝐴𝑙𝑐𝑜ℎ𝑜𝑙 ∈ 𝑅𝑀

𝐸𝑛𝑡𝑒𝑟𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 ∈ 𝑅𝑂
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A HETEROGENEOUS FRIEND NETWORK

Is friends with

Is friends with

Is friends with
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HETEROGENEOUS GRAPH NEURAL NETWORKS
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A HETEROGENEOUS FRIEND NETWORK

Predict: 90s German 

Heavy Metal

Atemlos Dur 

Die Nacht

Nirvana
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HETEROGENEOUS GRAPH NEURAL NETWORKS

 Can do heterogeneity with padding, long one-hot 

encodings, etc. using homogeneous GNN

 It is hard to reproduce comparisons between 

homoGNNs and heteroGNNs, but Zhang et al did 

exactly that

 Showed their model HetGNN outperformed 

homoGNNs on most tasks (involving different 

node/edge types)

 There are now tools* that handle heteroGNN natively, 

which can simplify implementation

 The results we show don’t use a library, so could be 

optimized
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Figure from Pytorch Geometric documentation 

– represents ogbn-mag dataset

*Pytorch Geometric HeteroData, DGL 

HeteroGraph, new kid on the block GNNKeras?

http://shichuan.org/hin/time/2019.KDD%202019%20Heterogeneous%20Graph%20Neural%20Network.pdf
https://pytorch-geometric.readthedocs.io/en/latest/notes/heterogeneous.html
https://ogb.stanford.edu/docs/nodeprop
https://pytorch-geometric.readthedocs.io/en/latest/notes/heterogeneous.html
https://docs.dgl.ai/en/0.6.x/generated/dgl.heterograph.html
https://www.sciencedirect.com/science/article/pii/S2352711022000486
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GOAL & PIPELINE OVERVIEW

 Goal: From a list of spacepoints, produce a list of track candidates, where each candidate is a list of spacepoints

 Current pipeline of the L2IT-Exatrkx collaborative effort

 Each stage offers multiple independent choices, depending on hardware and time constraints
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CURRENT PIPELINE 

PERFORMANCE
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 Consider GNN performance on edge classification 

across pseudorapidity 𝜂

 Drop in performance at low 𝜂 – what is special about 

this region?

See Charline’s talk!

https://indico.cern.ch/event/1103637/contributions/4821831/
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 Consider GNN performance on edge classification 

across pseudorapidity 𝜂

 Drop in performance at low 𝜂 – what is special about 

this region?

 Low performance in barrel strips, where spacepoints

are built from two strip clusters

 Spacepoint position may be far from “ideal” position 

– i.e. midpoint between ground truth clusters

 How can we attach these two sets of cluster 

features? Pixel spacepoints only have one set of 

cluster features…

True Cluster A

True Cluster B

Constructed 

spacepoint

Ideal spacepoint

Strip side A

Strip side B
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MESSAGE PASSING MECHANISM

For each node neighborhood:

a) Pass node channels through 

a multi-layer perceptron (MLP) 

encoder

b) Pass encoded channels along 

each edge to the central node 

of the neighborhood

At each node:

Sum all messages

Repeat
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Figure inspired by Koshi et. al.
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https://graphdeeplearning.github.io/files/informs-oct2019.pdf


 To get intuition, consider simple edge 

classifier MLP applied to two pixel nodes:

 To apply a filter MLP to a pixel (single cluster) and strip (double cluster) node 

combination, need a different MLP:

 Already gives better than homogeneous filter MLP (~2x construction purity) 11

MINIMAL HETEROGENEITY: EDGE MLP
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MINIMAL HETEROGENEITY: EDGE 

CLASSIFIER GNN

• Node strip encoder and node pixel 

encoder

• Edge strip-strip encoder, strip-pixel 

encoder and pixel-pixel encoder
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NON-MINIMAL EXTENSIONS: MULTIPLE NODE TYPES
 Can extend logic to all distinct hardware regions in detector

 For a four-region heterogeneous GNN, we have four node encoders/networks (𝑁0, 𝑁1, 𝑁2, 𝑁3) and ten edge 

encoders/networks (𝐸00, 𝐸01, 𝐸02, 𝐸03, 𝐸11, … , 𝐸34, 𝐸44)

 Larger model and takes longer to train

 Note: Could have heterogeneous (i.e. different, dedicated) models with the same node features

 For each edge and node type, we need a dedicated MLP model

4-region Symmetrical = 4 nodes, 10 edges 6-region = 6 nodes, 21 edges
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NON-MINIMAL EXTENSIONS: HETERO MESSAGE PASSING

Minimal case: Hetero node and edge encoders for 𝑁𝑟𝑒𝑔 regions
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Extension: Hetero node and edge networks
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NON-MINIMAL EXTENSIONS: HETERO MESSAGE PASSING

Level 0: Homogeneous

Level 1: HeteroEncoders

Level 2: HeteroGNN

Level 3: HeteroOutput
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RESULTS

 Apply two models to toy 𝑡 ҧ𝑡, 𝜇 = 200 dataset: homogeneous GNN and best-performing heterogeneous dataset

 HeteroGNN is a level 1 (only heterogeneous encoders), and 3-region (dedicated MLPs for pixel, barrel strip, and endcap 

strip)

 Compare relative performance across the detector – as expected barrel strip region performance significantly 

improved
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Investigating this drop in performance
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NEXT STEPS

 Reproduce the whole pipeline up to approved plots with full ITk dataset, including track 

reconstruction performance

 Study improvement to track reconstruction

 Understand what is giving the improvement – using different models, using all the cluster features, 

or both?

 Balancing LR / weighting between regions

 Insert cluster shape / energy deposit features

 Investigate other architectures applied to hetero structure
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CONCLUSION
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DO YOU HAVE HETEROGENEOUS DATA? CHIME IN!

Links

ExaTrkx website ● L2IT website ● ExaTrkx paper ● L2IT paper ● Codebase

• Heterogeneous GNNs are straightforward to implement by hand

• Dedicated libraries are being produced that can handle even this small amount of data 

management automatically

• If you have physically/conceptually different node types, or extra features, don’t use padding –

use dedicated MLPs for each node and edge type

• Heterogeneous encoders coupled with homogeneous node/edge networks may offer the best 

bang for buck: Handle separate input features but maintain common message passing space

https://exatrkx.github.io/
https://www.l2it.in2p3.fr/
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03047.pdf
https://hsf-reco-and-software-triggers.github.io/Tracking-ML-Exa.TrkX/
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BACKUP
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HOW TO IMPLEMENT

HETEROGENEOUS ARCHITECTURE

Now consider a node encoder 1 specific to the barrel 

strip volume, and a node encoder 0 for all other nodes. 

Message passing proceeds as:

1. Pass node features through the node encoder that 

belongs to that volume ID. That is, if volume_id 

∈ [0, 1, 3] then pass (𝑟𝑠, 𝜙𝑠, 𝑧𝑠) through encoder 

0. If volume_id ∈ [2] then pass 

(𝑟𝑠, 𝜙𝑠, 𝑧𝑠, 𝑟𝑐1 , 𝜙𝑐1 , 𝑧𝑐1 , 𝑟𝑐2 , 𝜙𝑐2 , 𝑧𝑐2) through 

encoder 1

Node encoder 1
Edge encoder 

[1,1]

Edge encoder 

[0,1]

Node encoder 0
Edge encoder 

[0,0]
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