HETEROGENEOUS GRAPH NEURAL NETWORK FOR HI-LUMI LHC

CONNECTING THE DOTS MINI-WORKSHOP 3RD JUNE, 2022, PRINCETON

DANIEL MURNANE & SYLVAIN CAILLOU ON BEHALF OF THE EXATRKX AND L2IT PROJECTS

HETEROGENEOUS GRAPH NEURAL NETWORKS

HETEROGENEOUS GRAPH NEURAL NETWORKS

- Can do heterogeneity with padding, long one-hot encodings, etc. using homogeneous GNN
- It is hard to reproduce comparisons between homoGNNs and heteroGNNs, but <u>Zhang et al did</u> <u>exactly that</u>
- Showed their model HetGNN outperformed homoGNNs on most tasks (involving different node/edge types)
- There are now tools* that handle heteroGNN natively, which can simplify implementation
- The results we show don't use a library, so could be optimized

Figure from Pytorch Geometric documentation

- represents ogbn-mag dataset

*<u>Pytorch Geometric HeteroData</u>, <u>DGL</u> <u>HeteroGraph</u>, new kid on the block <u>GNNKeras</u>?

GOAL & PIPELINE OVERVIEW

- Goal: From a list of spacepoints, produce a list of track candidates, where each candidate is a list of spacepoints
- Current pipeline of the L2IT-Exatrkx collaborative effort
- Each stage offers multiple independent choices, depending on hardware and time constraints

CURRENT PIPELINE PERFORMANCE

- Consider GNN performance on edge classification across pseudorapidity η
- Drop in performance at low η what is special about this region?

CURRENT PIPELINE PERFORMANCE

- Consider GNN performance on edge classification across pseudorapidity η
- Drop in performance at low η what is special about this region?
- Low performance in barrel strips, where spacepoints are built from two strip clusters
- Spacepoint position may be far from "ideal" position
 i.e. midpoint between ground truth clusters
- How can we attach these two sets of cluster features? Pixel spacepoints only have one set of cluster features...

CTD Mini-workshop, 3rd June 2022, Princeton

Input channels **Encoded channels** + + + = 0 0 2 2 3 3 3

MESSAGE PASSING MECHANISM

For each node neighborhood:

- Pass node channels through a) a multi-layer perceptron (MLP) encoder
- Pass encoded channels along b) each edge to the central node of the neighborhood

At each node:

Sum all messages

Repeat

Figure inspired by Koshi et. al.

MINIMAL HETEROGENEITY: EDGE MLP

To get intuition, consider simple edge classifier MLP applied to two pixel nodes:

To apply a filter MLP to a pixel (single cluster) and strip (double cluster) node combination, need a *different* MLP:

Already gives better than homogeneous filter MLP (~2x construction purity)

MINIMAL HETEROGENEITY: EDGE CLASSIFIER GNN

- Node strip encoder and node pixel encoder
- Edge strip-strip encoder, strip-pixel encoder and pixel-pixel encoder

NON-MINIMAL EXTENSIONS: MULTIPLE NODE TYPES

- Can extend logic to all distinct hardware regions in detector
- For a four-region heterogeneous GNN, we have four node encoders/networks (N_0 , N_1 , N_2 , N_3) and ten edge encoders/networks (E_{00} , E_{01} , E_{02} , E_{03} , E_{11} , ..., E_{34} , E_{44})
- Larger model and takes longer to train
- Note: Could have heterogeneous (i.e. different, dedicated) models with the same node features
- For each edge and node type, we need a dedicated MLP model

NON-MINIMAL EXTENSIONS: HETERO MESSAGE PASSING

Minimal case: Hetero node and edge encoders for N_{reg} regions

NON-MINIMAL EXTENSIONS: HETERO MESSAGE PASSING

RESULTS

• Apply two models to toy $t\bar{t}$, $\mu = \langle 200 \rangle$ dataset: homogeneous GNN and best-performing heterogeneous dataset

Compare relative performance across the detector – as expected barrel strip region performance significantly

 HeteroGNN is a level 1 (only heterogeneous encoders), and 3-region (dedicated MLPs for pixel, barrel strip, and endcap strip)

RESULTS

- Apply two models to toy $t\bar{t}$, $\mu = \langle 200 \rangle$ dataset: homogeneous GNN and best-performing heterogeneous dataset
- HeteroGNN is a level 1 (only heterogeneous encoders), and 3-region (dedicated MLPs for pixel, barrel strip, and endcap strip)

 Compare relative performance across the detector – as expected barrel strip region performance significantly improved

NEXT STEPS

- Reproduce the whole pipeline up to approved plots with full ITk dataset, including track reconstruction performance
- Study improvement to track reconstruction
- Understand what is giving the improvement using different models, using all the cluster features, or both?
- Balancing LR / weighting between regions
- Insert cluster shape / energy deposit features
- Investigate other architectures applied to hetero structure

CONCLUSION

- Heterogeneous GNNs are straightforward to implement by hand
- Dedicated libraries are being produced that can handle even this small amount of data management automatically
- If you have physically/conceptually different node types, or extra features, don't use padding use dedicated MLPs for each node and edge type
- Heterogeneous encoders coupled with homogeneous node/edge networks may offer the best bang for buck: Handle separate input features but maintain common message passing space

DO YOU HAVE HETEROGENEOUS DATA? CHIME IN!

Links

ExaTrkx website

L2IT website

ExaTrkx paper

L2IT paper

Codebase

BACKUP

HOW TO IMPLEMENT HETEROGENEOUS ARCHITECTURE

Now consider a node encoder 1 specific to the barrel strip volume, and a node encoder 0 for all other nodes. Message passing proceeds as:

1. Pass node features through the node encoder that belongs to that volume ID. That is, if volume_id $\in [0, 1, 3]$ then pass (r^s, ϕ^s, z^s) through encoder 0. If volume_id $\in [2]$ then pass $(r^s, \phi^s, z^s, r^{c_1}, \phi^{c_1}, z^{c_1}, r^{c_2}, \phi^{c_2}, z^{c_2})$ through encoder 1

encoded_nodes = torch.empty((x.shape[0], self.hparams["hidden"])).to(self.device)
for encoder, model in zip(self.node_encoders, self.hparams["model_ids"]):
 node_id_mask = torch.isin(volume_id, torch.tensor(model["volume_ids"]).to(self.device))
 encoded_nodes[node_id_mask] = checkpoint(encoder, x[node_id_mask, :model["num_features"]])

RERKELEY LAR

HOW TO IMPLEMENT HETEROGENEOUS ARCHITECTURE

Now consider a node encoder 1 specific to the barrel strip volume, and a node encoder 0 for all other nodes. Message passing proceeds as:

1. Pass node features through the node encoder that belongs to that volume ID. That is, if volume_id $\in [0, 1, 3]$ then pass (r^s, ϕ^s, z^s) through encoder 0. If volume_id $\in [2]$ then pass $(r^s, \phi^s, z^s, r^{c_1}, \phi^{c_1}, z^{c_1}, r^{c_2}, \phi^{c_2}, z^{c_2})$ through

encoder 1

encoded_nodes = torch.empty((x.shape[0], self.hparams["hidden"])).to(self.device)
for encoder, model in zip(self.node_encoders, self.hparams["model_ids"]):
 node_id_mask = torch.isin(volume_id, torch.tensor(model["volume_ids"]).to(self.device))
 encoded_nodes[node_id_mask] = checkpoint(encoder, x[node_id_mask, :model["num_features"]])

