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Physics and ML are concerned
with characterizing the true
probability distributions of

nature, how do we understand

which model IS most accurate
and predictive? How do we use
such a model to do science?
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Outline

- Three examples of interpretability techniques applied to
GNNs (or similar models) in HEP
1. Feature Importance and relevance propagation
2. Decision approximation
3.  Symbolic regression
- GNN-focused interpretability techniques from industry
1. Perturbation-based explainability

2. Graph filters and kernels
3. Disentangled representation learning

- Some prompts for discussion
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Feature
Importance and
Relevance
Propagation
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Correlation of Deep Network output with pixel activations.

CNN Interpretation

- Look at correlation of CNN output with standard
physics features = it's learning thing we expect to be : -
iImportant : r s

- Look at average of images with highest activations
for last hidden layer - presence of secondary core is o o o
i nfo rm ative Correlation of Deep Network output with pixel activations.

- Look at per pixel correlation with CNN output (doesn’t [~ | B~
map to a known physical function)

o

- Reweight samples to remove known physical variables - i ”
the radiation around the second core seems to matter =

- Look at only jets with W-like mass - radiation between B

- 18
cores seems to matter - learning about color flow? .
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mailto:https://arxiv.org/abs/1511.05190

Adding In Expertise

1.0
- Augment the CNN with physics- -
motivated features after initial prediction :
- Use LRP to understand what information { e |
the network is using R; ZZZJZ:,,C ®o o3 o1 o6 03 1o
- Can you replace the learned *
representation with engineered features %
7
- Demonstrates the network learns /2
expected physical relationships 2
- But Image representatlon IS most Important 204 PP
feature - some new information : o ¢
XAUG Variables :_:;> Trainmg-i 02 ’ oz Z
g > /CNN/RNN \
||| e
i 0
%F <
Tl /

;/ paper


https://link.springer.com/chapter/10.1007/978-3-030-28954-6_10
mailto:https://arxiv.org/abs/2011.13466
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Extending to GNNs

MLPF uses graphs of reconstructed detector
elements for node classification

;= ltype, pr,n, ﬁb, Mout ¢Outa EECAL, EHCALa charge, iS—gen—els is_gen_mu]
Yi = [PID: pr, E: m, ¢9 Charge]

- GNNs are NNs with an aggregation step
- Modify LRP formula to distribute aggregated neighborhood

Primary track when correctly reconstructed as a charged hadron
T T — T T T T

information to un-aggregated nodes in previous layer § n
5 | iy ]
-g i charge 1
103} E

R = Z R{+
Z

Construct R-score tensor for output neurons of each node 102 1
- Create R-maps: sample tensors for output classes,

sort nodes by relevance, average over events ]
y J g i j
R-maps averaged over 25k primary tracks correctly classified as charged hadrons 10°F , | ‘ ‘ i
T T T T T T T T [0} - - . =
Charged hadron 10" © 0.0 0.2 0.4 0.6 0.8 1.0
3 R-scores
o Primary cluster when correctly reconstructed as a neutral hadron
Most relevant neighbor 0.00977 0.01067 0.00397 0.00428 0.00626 0.00494 0.00377 a T T T T T T T T T
°
1072 g a4 n
2nd most relevant neighbor [EEECLEEEE 0.00635 0.00262 0.0027 0.00369 0.0032 0.00232 'E 10%F ¢ E
2 charge |
3rd most relevant neighbor 0.00447 0.00441 0.00174 0.00182 0.00248 0.00229 UE:
-3 108 E
Track|cluster  pr|Et n [} PIE Nout|Eem bout|Enad charge is_gen_mu is_gen_el 10 g E
R-maps averaged over 22.5k primary clusters correctly classified as neutral hadrons
2| N
Neutral hadron 10
Most relevant neighbor JEEEEEEES
10!
2nd most relevant neighbor|
3rd most relevant neighbor, 10° o ! . ! . ! I

0.0 0.2 0.4 0.6 0.8 1.0

_ M R-scores

Track|cluster  pr|Et Nout|Eem ®out|Enad charge is_gen_mu is_gen_el


mailto:https://arxiv.org/abs/2111.12840

Implications and Limitations

- We can (sort of) check if a model is learning about
physics features we know

- But how do we interpret what else it is learning
- No clear way to map image relevances to mathematical information

- No way to identify if relevances are due to true
generalizable physics or statistical artifacts

- These methods don’t characterize model performance on
edge cases or difficult samples



Savannah Thais 06/03/2022 9

Using Physics
Knowledge as a
Basis
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Constructing Learned Information

- Use a CNN trained on low level information (jet images) to guide the
construction of a simplified classifier based on high level interpretable
features

- Use average decision ordering to maximize the similarity between the
decision boundaries of the two models

- Use a black box guided search: iteratively selecting HL features that
maximize ADO with the LL classifier

- At each search step separate samples where HL and LL classifiers disagree

- The bulk of the CNN’s power can be captured by 6 known jet features
DO[f, g)(z,2') = ©( (f(2) - (=) (9(z) — 9(=)) )

ADOLf, g] = f dz dz’ puig (@) poig () DOLS, ] (z, 2'). Observable AUC ADO[CNN, Obs.]
Signal/Background Pairs Black-Box M_] et 0-898 :I: 0.004 Oo807
=1 BB Guided cy=! 0.660 + 0.006 0.584
1 ST (| Cy=? 0.604 + 0.007 0.548
B=1
T - of,  omiww o
an oucio an |G ouen e 0.662 + 0.006 0.600
Ordering? . . Ordering 2 : . .
: [ @ 6HL 0.9504 & 0.0002 0.971
o | : CNN 0.9531 =+ 0.0002 1.000
HLN -
HE— vo. || NS @ SN 48SHL 0.9535 + 0.0002 0.978
HBE - | -[8 THLbiackbox 0.9528 £ 0.0003 0.971



mailto:https://arxiv.org/abs/2010.11998
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Constructing Learned Information

Define a basis space that captures a broad spectrum of physically
Interpretable information

- Energy Flow Polynomials (EFPSs): functions of momentum fraction of
calorimeter cell and pairwise angular distance between cells

Define a subspace of samples where 6-feature NN did not match
CNN performance and search for EFP with max ADO

- Identifies a new EFP that seems to help on edge cases

Can use black box guided search directly on space of EFPs
- Some EFPs identified are substantially different than traditional jet features

Tteration (n)] EFP | k_J Chrom #|ADO[EFP,CNN]x, , AUC[EFP][ADO[HLN,, CNN]x,, AUCHLN,]

0 Mo +pr| - — - - - 0.9259 0.9119
»
1 Yeol2 Ll 2 0.8144 0.8190 0.9570 0.9382
947 2 S loe 2 0.6377 0.8106 0.9673 0.9458
== Black-box Guided 3 . 0 - 1 0.5460 0.6737 0.9692 0.9476
/ —— Brute Force e .
_ 4 = i 0.5274 0.8464 0.9712 0.9487
Truth Guided :
-—— CNN 5 S B T | 0.5450 0.5882 0.9714 0.9504
""" 6 HL 6 < 1l s 0.5382 0.7678 0.9734 0.9523
7 S a o T T 0.5561 0.5957 0.9741 0.9528




Extending to GNNSs

- Local black box approximator learns an
Interpretable non-linear model locally in
the subgraph of an individual node

- E.g. linear regression, decision trees, etc

- Use HSIC Lasso for feature selection to
approximate decision in an n-hop node-
neighborhood

- Minimize Lasso loss across pre-determined
set of features

d
1 _ _
in_||L-> BK®|3
fgel%gzll k_lﬁk |7 + pllBll1

st. [(1,..

- Demonstrated robustness to noisy and
correlated features

- Still a bit of a gap on how to interpret the
locality of a decision

°56d201
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1.0

GraphLIME

08 —— GNNexplainer

' —— LIME

0.6 Greedy
Random

0.4

1.4 GraphLIME
1.2 —— GNNexplainer
—— LIME
1.0
Greedy
0.8 Random
0.6
0.4
0.0
-2 0 2 4 6 8 10

Algorithm 1 Locally nonlinear Explanation: GraphLIME

Input: GNN classifier f, Number of explanation features K
Input: the graph G, the node v being explained
Output: K explanation features
1: X,, = N_hop_neighbor_sample(v)
VAR {}
3: forall z; € X, do
4y = f(=:)
5: Z(*ZU(:E,,,yz)
6: end for
7: B3 « HSIC Lasso(Z) > with z; as features, y; as label
8: ((v) « Top-K features as explanations based on 3



mailto:https://arxiv.org/abs/2001.06216
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Implications and Limitations

- These methods give us a specific quantification on what the
network is learning in terms of what we already know

- By directly parametrizing the information in terms of known features
we ensure learned information is not a statistical artifact

- Building a robust classifier with a reduced feature set enables
better uncertainty quantification

- Saliency maps have known issues for discrete/sparse input
structures like adjacency matrices

- For some problems we don’t have a nice basis space of features to
search over

- These bases don'’t provide full coverage, unable to characterize other
learned information



Mapping Back to
Math
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fx) =x

Symbolic Regression

- Finds an analytic equation that mimics —%
the predictions of a trained ML model f =2 032

- Find the analytic function that maps your
Inputs to the outputs of your model

- By cleverly setting up your ML model you ——
reduce the space of functions to search over ) = cos(x — 0.32)
- Typically done with a genetic algorithm '

&
- Recursively build a function using basis
space of input variables, operators, and

constants (through crossover and mutation) ©

A e
| D
- Minimize error between function and ML ©
prediction f(x) = x + cos(x — 0.32)
- Result is a set of possible equations ey~ oflle
- Can enforce constraints like penalizing R
complexity W S
} OO

®
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Learning Astrophysics u,, z,

1. Our inputs are the A
positions of the bodies @_-_ f”\
2. They are converted W N N
into pairwise distances ANV &\
- 14
N 3
3. Our model tries to 4 Ey
N Z
guess a mass for %S
each body
4. It then also guesses a /N _, ’
force, that is a Fy3=¢(d,3 My; M;
function of distance — —
and masses M,, a; M;, a

5. Using Newton’s laws of 6. Finally, it compares this
motion (Z F = Ma) predicted acceleration, Minimize

_ with the true ored) — 2 )/‘/1
!t converts th? forces acceleration from the a(pred) — a'(true
into accelerations data aver


mailto:https://arxiv.org/abs/2006.11287
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Learning Astrophysics

Legend

Q Data Vector
O Latent Vector

Il Neural Network (MLP)

Nodes
Pairs of nodes
Edge model (¢°)
Messages (€})

Pool

Node model (¢")
Updated nodes

Output state

I'_  Approximate with
symbolic regression

Graph Network

Cloncatenate with node

Analogy to
Newtonian Mechanics

Particles
Two interacting particles (i, j)
Compute force F; 7

Sum into net force F o ;

Acceleration a; = Fper i /m;

Compute next timestep

logq (M/Mg)
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Extracting the Physics

3 D n - x 1[}9
& B e . 107 —
& 2.5 B ] 5
=9 [r{r+C )] NH: 105 -
E.E} ) o
2.0 - .
= m Gmgms 2 10°+ A Yo gl ¥
B CympmyE I
S5 o : 100
E )+ =mams E
- — 107!
< 1.0 4 B |
I 8 1n-3
: 5
& 0.5 1 _x
J l I 1077 - l— NN + SR
Newtonian gravity
0.0 - T T T 10°7 | T | T T T T
3 5 7 7 11 13 17 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Complexity Time (years)

- Apply symbolic regression to the GNN messages (forces) with a
constraint to balance accuracy and equation complexity

- Can substitute learned equation for the force guess to improve the
simulator and the mass predictions (node predictions)
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Implications and Limitations

- This process had been successfully applied to more complex
systems (estimating galaxies dark matter halo)

- ‘New’ equations could be used to guide future experiments

- Can we validate an equation’s predictions are accurate, does it describe a
new particle or force with additional implications?

- How do we know which equation to pick (smallest error might not
always be the correct equation)

- Simplicity of an equation as a decision factor is a big assumption

- How do we decide what constraints and priors to incorporate into
the model

- Doesn’t allow for the possibility that any of these constraints are wrong

- How do you account for uncertainties/mismodelings in the
synthetic data or reconstruction software

- Is the ML model decision actually describing nature
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Other GNN
Interpretability
Methods
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Perturbation-based Explainability

- Idea: identify maximally relevant subgrapks
that contribute to mutual information sharing

- GNNEXxplainer learns a real-valued graph
mask with mean field variational
approximation

- Maximize change in prediction probability by gE s s mesge  Acc(BEB.B.)

=e

I’EdUCIng COmpUtatIOH to SUbgraph /v Important for ¢ Unimportant for 3
- Qualitatively allows edge/node based max M1 (Y, (Gs, Xs)) = H(Y) — H(Y|G = Gs, X = Xs).
counterfactuals

H(Y|G=G5,X=XS) = 7]EY|GS,XS [10qu>(Y|G=GS,X=XS)]
- Can also learn a feature mask

- CE-GNNEXxplainer uses dynamic edge-deletion to identify the

minimum prediction-altering subgraph

- Use adjacency matrix sparsification to minimize difference between
performance on original and perturbed graph

—> Q"”Iﬂ

Matrix 0 lCF
sparsification (C: Q ' g:;n;?ple (v

L= £'Pred(vaﬁ | f:g) +/8‘C’di3t(v’ﬁ | d)’



mailto:https://arxiv.org/abs/1903.03894
mailto:https://arxiv.org/abs/2102.03322
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Graph Filters and Kernels

- Idea: integrate graph kernels (as filters) into the GNN message
passing step and use CNN filter interpretation methods

- Substitute graph kernels for neighborhood feature aggregation

- Take kernel function to compare trainable hidden subgraphs with local node
neighborhood and use kernel to update the node

- The filter’ is used to learn the hidden subgraph
- Kernels can be calculated in different ways

- Can directly visualize the graph filters and application to input graph

- Interpretability here is not precise, but can provide some intuition
- Gain a sense of structure shapes that are important across dataset

1

(a) ) B . —An I Algorithm 1: Forward pass in [-th KerGNN layer

5 = y .“( T 2 G- Input: Graph G = (V) £): Input node feature maps {¢1-1(v) :
L /54 ! A % % v € V}; Graph filters {Hi(l) : @ = 1,...,di}; Graph kernel

> iy A ‘ VR 0 function K
0 4 & o : o J (/# ¢ Lk Output: Graph G = (V, £); Output node feature maps {¢;(v) :
= pan I i L] 5 1 v E V}
el | ol W\ CNRN Y v/
'/. @ Q/ &< 4; | | =3 & I forvecV do
. : ‘ . G = subgraph({v} UN(v));
ﬁ4 : /‘\v 7/l fori=1tod; do
...... W o ; o 61.:(v) = K (Go, H);

input graphs graph filters  output graphs : input graphs graph filters  output graphs end for paper

end for



mailto:https://arxiv.org/abs/2201.00491
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Disentangled Representation Learning

- [dea: separate input information into features in learned latent space
such that they can be mapped to interpretable values

- Different methods are proposed to learn these representations

- Disentangled graph convolutional networks: use neighborhood routing to
identify the factor that contributes to an edge relationship by assigning
neighbors to learned channels

- Disentangled graph collaborative filtering: learn a distribution over defined
features for each edge relation

- Disentangled contrastive learning: use a factor-wise discrimination objective
in trainina to force embeddina dimensions to describe different information

Feed back to improve neighborhood rouiing.l

Input Graph G; Disentangled Factor-wise
—m—— Graph Encoder (") Contrastive Learning

‘o @oo

H Extract features specific to each factor. Output

nnnnnnnn gled Representation z;
wGrapn visentanging ivioauie 2,
Interaction Graph Intent-aware Graph A, Intent-aware Graph Ay, Intent-aware Graph Ay, = oo eyl N N ™ - -I- I___—_I__ ————
@ * Independence G; S
u. . o - "
Q A ~ Modeling Module l Graph Objective
8 DENEE | BN Augmentations Maximize Agreement
B ' Under Each Factor
50 40 0 O 0 4 0 4O O 4O O KO LO i;’
T —p Distance Correlation B \ - ==
ID Embeddi Intont. 8 b y ‘\ ! / = MLP ______________
'm ing 1y g i O BB = \ r m— | m—
% s m P o O — z,
T s Disentangled 4 N o M = \ / - et F;'Z -
. SRS @ Message € N\ ™ \Disentangled Representationz
Representation i, /] ! essage — = OO et

Passing Extract features specific to
or


mailto:https://proceedings.mlr.press/v97/ma19a.html
mailto:https://arxiv.org/pdf/2007.01764.pdf
mailto:https://proceedings.neurips.cc//paper/2021/file/b6cda17abb967ed28ec9610137aa45f7-Paper.pdf
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Discussion Prompts

- Is interpretability necessary? If we can demonstrate robustness and
accuracy do we need to understand the model?

- How precise does interpretability need to be?
- Do we need to map to fundamental physical values?
- Are things like counterfactual explanations valuable in a physics context?

- How do we encourage the adoption of interpretable and explainable Al
techniques from broader ML field?

- For GNNs specifically, can we consider methods like symmetry
enforcement or attention mechanisms as interpretability?

- Is interpretability fundamentally in opposition to robustness?

- Recent paper “Attribution based explanations that provide recourse cannot be
robust”


https://arxiv.org/abs/2205.15834
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Thank you!

Looking forward to an interesting discussion!

DK sthais@princeton.edu £ @basicsciencesav



