Towards Achieving Real-time GNN Interence

Alina [Lazar on behalf of the Exa/lrkX Collaboration
alazar@ysu.edu
Youngstown State University

Accelerating the FExa.lrkX Interence on GPU

Baseline radius_graph — faiss KNN

DBSCAN clustering — cuGraph connected components

.
2.
3. Full precision — mixed precision
4,

Faiss knn — FRNN radius graph

FRNN + mixed precision + cuGraph: 0.7 £ 0.13 sec —

arXiv preprint https://arxiv.org/pdf/2202.06929.pdf

=]
w

wmoo
o

=
&
]
E
=
w
(¥
c
a
—
2
c

LY
w

e
o

Baseline

Baseline Imp. (s) Faiss cuGraph AMP FRNN
Data Loading (0.0022 + 0.0003 |0.0021 + 0.0003 [0.0023 + 0.0003 |0.0022 + 0.0003 |0.0022 + 0.0003
Embedding [0.02 £ 0.003 10.02 + 0.002 0.02 £ 0.002 0.0067 + 0.0007 /0.0067 + 0.0007
Build Edge [11.52 + 2.64 LO.54 + 0.07 0.53 £ 0.07 0.53 + 0.07 0.04 + 0.01
Filtering 0.67 £0.15 L0.67 +0.15 0.67 £0.15 0.37 £0.08 0.37 £ 0.08
GNN 0.17 £ 0.03 |O.17 +0.03 0.17 £ 0.03 0.17 £ 0.03 0.17 £ 0.03
Labeling 2.16+0.3 2.14+0.3 0.11 +0.01 0.09 £ 0.008 0.09 + 0.008
Total Time [14.57 +3.14 3.56 £ 0.55 1.53+0.26 1.17£0.18 0.7 +0.13

CuGraph

Exa.IrkX Track Reconstruction - Scaling

Computing performance scales linearly with the number of input space points.

CPU GPU

D e
< _ © &
& : ® B

Number of spacepoints Number of spacepoints

Ju, X., Murnane, D., Calafiura, P., Choma, N., Conlon, S., Farrell, S., Xu, Y., Spiropulu, M., Vlimant, J.R., Aurisano, A. and Hewes, J., 2021.
Performance of a geometric deep learning pipeline for HL-LHC particle tracking. The European Physical Journal C, 81(10), pp.1-14.
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8

Towards Particle Tracking in Production

GIL

-y

!!A

We need a mechanism to integrate the
Exa.TrkX pipeline with C++-based event
reconstruction workflows (ACTS).

Deep learning inference runs predominantly
on the GPUs.

Python’s threading model is limited by the
Global Interpreter Lock (GIL), slowing
down throughput.

By converting the pipeline to C++, we can
overcome Python threading drawbacks.

Python to C++

Build Edges uses FRNN written in CUDA and
libtorch

Track Labeling uses cuGraph from RapidsAl

Convert embedding, filtering,and GNN to
ONNX models; Use OnnxRuntime to run them

Problem: The physics performance of GNN
ONNX is compromised because the
scatter_add operator does not work correctly

Solution: Convert embedding, filtering, and
GNN to TorchScript models

Torch-lensorR'1

TorchScript

TensorRT GPU Optimizations

C++ Deployment Options
FP16 & INT8 Support -
Minimal Conversion Effort TensorRT GPU Optimizations

C++ Deployment Options
No GPU Specific Optimizations supports Any Model FP16 &p|N'?';8 Suppopr't

Only Python Deployment

Supports Any Model
No Modifications Required

Requires ONNX Op Support
Significant Conversion Effort

GNN
Inference

Accelerators

* PyTorch models can be ran with
AMP (automated mixed precision)

e Convert the GNN PyTorch
Geometric models to TorchScript

(Jit)

* Convert models (TensorFlow and
PyTorch) to ONNX and run them
with half-precision

* scatter_add - not implemented

6/3/2022 CTD 2022

O PyTorch

TensorFlow

GNN

Applications
Real-time
Processing

6/3/2022 CTD 2022

* Code analysis

* Automated HW/SWV co-design

* Scene graph understanding
e Smart EDA tools

Medium

* Transportation and traffic forecasting
Social network analysis

Recommender system
Molecule generation and drug discovery
Health records modeling

* LiDAR and point cloud data for autonomous driving

* High energy physics
* Network intrusion detection

Point cloud representation Graph representation

=
o
—y
%)
3
L
17}
=
=)
O

ATLAS

EXPERIMENT

Run: 348197
Event: 921894
2018-04-17 13:08:51 CEST

GNN Appllcatlons LIDAR and point cloud data for autonomous driving

* High energy physics

Real'tlme PFOCGSSlng ngh * Network intrusion detection

6/3/2022 CTD 2022 9

Il
Detection methods ‘ Modality ‘

Server GPU
speed (ms)

F-PointNet []
AVOD-FPN []
UberATG-MMF []

[]
5D Object
STD []

SECOND []
Point-GNN []

Detection

Zhao, P., Niu, W,, Yuan, G,, Cai, Y., Sung, H. H,, Liy, S,, ... & Lin, X. (2020). Achieving real-time
6/3/2022 CTD 2022 lidar 3d object detection on a mobile device. arXiv preprint arXiv:2012.13801. 10

5]:) ObjeCt e GNN-based architecture achieves

the best accuracy

DeteCtiOn * The GNN inference takes between
GNN InfErence 8 and 36 times longer.

-I- = L
: - : Server GPU Car 3D detection Car BEV detection
Detection methods Modality

speed (ms) asy Moderate Hard Easy Moderate Hard

170 69.22 60.78 | 90.58 84.73 75.12
R+L* 100 71.94 66.31 | 90.64 84.37 80.04.

1
o
e
L

o

I3 2

.xl:-u.._ll—l
—] (e

F-PointNet []
AVOD-FPN []
UberATG-MMEF []

sl s

o0
o

80 76.75 68.41 | 89.49 87.47 79.10

Fast Point R-CNN [] 65 : 77.46 70.21 89.97 87.08 80.40
STD [] 80 77.63 76.06 | 89.66 87.76 86.89
SECOND [] 50 72.55 65.82 | 89.39 83.77 78.59
Point-GNN [] 643 78.34 72.29 | 92.04 88.20 81.97
Ours 18 75.57 68.37 | 90.02 86.79 80.80

b b Lo oy Lo
h = — O

T
ot

oo Qh oD oD oo
h =] s O LR

Zhao, P., Niu, W,, Yuan, G,, Cai, Y., Sung, H. H,, Liy, S,, ... & Lin, X. (2020). Achieving real-time
6/3/2022 CTD 2022 lidar 3d object detection on a mobile device. arXiv preprint arXiv:2012.13801. I

Point cloud

Pillar

Predictions

Backbone .| Detection

" Feature Net | " (2D CNN) Head (SSD) |

PointPillars
Architecture

6/3/2022 CTD 2022

* First part is an MLP

* Second pard is a 2D CNN

* They are connected with a scatter add

A case study of the deployment of PointPillars
for LiDAR-based 3D object detection.

Get Ideas They evaluate the runtime of the deployed

DNN using two different libraries, TensorRT

f['()m 5[) (ONNX) and TorchScript (half precision).

Ob] cctl They observe slight advantages of TensorRT for
convolutional layers and TorchScript for fully

DGt@CthH connected layers.

The scatter operation is implemented with
C++ functions using the CUDA library.

Stacker, L., Fei, J., Heidenreich, P., Bonarens, F., Rambach, |., Stricker, D., & Stiller, C. (2021). Deployment of Deep Neural Networks for Object Detection
on Edge Al Devices with Runtime Optimization. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1015-1022).

ONNX and TensorR 1T scatter ops

* Both ONNX and TensorRT implementations of the ScatterElements and
ScatterND don’t work.

* ONNX opset |6 has the reduction implemented, but it doesn’t work in
ONNXRuntime.

* For Object Detection people use Nyvidia’s graphsurgeon to remove the
scatter_add op out and replace it with the ONNX implementation or
the C++ CUDA implementation.

6/3/2022 CTD 2022 14

Other Intference Accelerators

* OLlve from ONNX - - is a Python
package that automates the process of accelerating models with ONNX
Runtime (ORT).

* Glow from PyTorch - is 2 machine
learning compiler and execution engine for hardware accelerators. It is
designed to be used as a backend for high-level machine learning
frameworks.

6/3/2022 CTD 2022

https://github.com/microsoft/OLive
https://github.com/pytorch/glow

New
Developments

* GNN Inference using Channel Pruning

e GenGNN Framework

222222222222222

GNN Inference using
Channel Pruning * This pruning framework uses a novel

LASSO regression formulation for GNNs
to identify feature dimensions (channels)
that have high influence on the output
activation.

* To further reduce the inference
complexity, they effectively store and
reuse hidden features of visited nodes,
which significantly reduces the number of
supporting nodes needed.

* They achieved an average of 3.27x
speedup on GPU with little drop in
performance.

Zhou, Hongkuan, Ajitesh Srivastava, Hanging Zeng, Rajgopal Kannan, and Viktor Prasanna. "Accelerating Large Scale Real-Time GNN
Inference using Channel Pruning." arXiv preprint arXiv:2105.04528 (2021).

6/3/2022 CTD 2022 17

GenGNN Framework

EXISTING WORK GENGNN FRAMEWORK GENGNN ADVANTAGES

* Most focus on Graph Convolution ¢ A general framework for message * Support a wide range of GNN:s:
Network (GCN): A limited type passing Generic

* Heavy pre-processing: Not suitable * A library for model specific * No pre-processing required: Real-
for real-time components time oriented

* Most on application-specific * End-to-end open-source FPGA
integrated circuits (ASIC) via implementation

simulation: not end-to-end, far from
practical

Abi-Karam, S., He,Y., Sarkar, R., Sathidevi, L., Qiao, Z., & Hao, C. (2022). GenGNN:A Generic FPGA Framework for Graph Neural
Network Acceleration. arXiv preprint arXiv:2201.08475.).

6/3/2022 CTD 2022 18

- g
;;mb “
g

J
Y4 .
N

~

Summar * Research is focused on training and not inference
y * Most accelerators work well for CNN and GCN

* There are some new approaches for speeding-up GNN inference

6/3/2022 CTD 2022 19

P

QAN ./ZL_ B

W) &{\b

Thank You!

6/3/2022 CTD 2022 20

