
On Power Efficiency:

x86 vs. ARM

Dr. Emanuele Simili GridPP47 Durham, 23rd March 2022

• Comparing x86_64 vs arm64 architectures

• Exporter tools & visualization

• Obvious Limitations of our approach

• Benchmarks (BASH, C, ATLAS)

• Results

• Conclusions

ScotGrid Glasgow:

Emanuele Simili, Gordon Stewart, Samuel Skipsey, David Britton

Outline

Leveraging the hardware available at Glasgow and Leicester, we have compared the
power efficiency and execution speed of different architectures under similar loads.
The study was limited in scope, it only involved 2 remote arm64 machines and 2 local
x86_64 machines of different generations.

Various benchmarks have been executed and several job profiles were collected
(memory, CPU, power). The benchmarks included a BASH script, a few compiled C
programs and two different types of ATLAS simulations (where possible).

No substantial differences in power consumption were found among the architectures
under exam, despite these being expected from different generations of processors.

Results are far from conclusive. Moreover, the whole study suffered from some obvious
limitations (*), which must be addressed in the future if such project should continue.

Special thanks to: Davide Costanzo (Sheffield), Oana Boeriu (CERN), Johannes Elmsheuser (CERN),

Jon Wakelin (Leicester) and the Excalibur Project

Power Comparison

DELL Epyc (Glasgow)
DELL PowerEdge C6525
2 * 32cores Epyc x86_64 CPUs & 512GB RAM (128 threads)

HP Xeon (Glasgow)
HP ProLiant DL60 Gen9
2 * 10cores Xeon x86_64 CPUs and 156GB RAM (40 threads)

ARM+GPU (Leicester)
Ampere Q80
Neoverse-N1 arm64 CPU & 512GB RAM (80 threads)
+ 2 * Nvidia A100 (40GB) GPUs

ARM (Leicester)
HPE CN99XX
2 * 112cores arm64 Cavium ThunderX2 CPUs & 256GB RAM (224 threads)

Available Hardware

Local power readings and resource usage (at Glasgow) is colourfully visualised
in our Grafana dashboards:

Visualization (local)

Cluster Overview

WorkerNode View

Remote readings (at Leicester) are achieved by two custom scripts, that collect and
export metrics such as CPU, RAM and Power Usage:

1) Every 30 seconds, a cron job (root) exports IPMI power reading with timestamp to
/tmp/ipmidump.txt (… because IPMItool requires root privileges).
The Cavium ARM machine has a custom Kernel module (tx2mon *) in place of IPMI.

2) Before starting the job, I (user) run a background script that grabs these IPMI
readings, attaches more info (CPU, RAM) and appends them to a CSV file.
On the ARM+GPU machine I use also nvidia-smi to grab the GPUs’ power usage.

When the job is done, the CSV file is exported to Excel for analysis and visualization.
So … most of the analysis was painfully done in MS Excel 

The exact same apparatus has been installed on both remote and local machines, in
order to get the same type of data for an easier comparison.

Power Readings (remote)

https://github.com/Marvell-SPBU/tx2mon(*)

(*) There were obvious limitations to this approach, which relied on resources at two different
geographical locations: local x86 machines (Glasgow) & remote arm machines at Leicester.

- In Glasgow I have full sys-admin control, at Leicester I am just a normal user with limited
privileges. Therefore, I have limited control over the activity of these remote machines, and
indeed we could see different levels of usage depending on the day/time.

- Machines have very different hardware, in particular the ARM+GPU node at Leicester that
can run ATLAS has 2 powerful Nvidia Ampere GPUs just sitting idle.

- Power measurements are mainly read by IPMI tools interacting with different hardware, and
in one case with a custom tool (tx2mon on Cavium). So, readings might not be directly
comparable, and there is no validation of such data (e.g., an external power-meter).

- The ARM+GPU machine is accessed through Slurm (which adds an extra layer).
I can send my job requests with the flag --exclusive, which gives me some sort of priority.

- Cooling is totally neglected: more watts go in, more heat comes out. This might be an
important factor for the overall power required by the data center (including coolers).

Limitations

Since ATLAS could run only on one of the two ARM machines available, various other
benchmarks were attempted. In all cases we made use of multithreading:

- Prime number sieve (BASH script): prime numbers up to 1 M, tot. 78,498

- Prime number sieve (C with OMP): prime numbers up to 100 M, tot. 5,761,455

- Large Matrix Multiplication (C with OMP): 20k x 20k random matrix (int & float *)

- Full G4MT ATLAS Simulation (TTbar & Charginos): 1k and 10k events

Benchmark Jobs

x86 arm64

DELL PowerEdge C6525 HP ProLiant DL60 Gen9 HPE CN99XX Ampere Q80

bash Prime Number Sieve (bash)

compiled Prime Number Sieve (C + OMP)

Large Matrix Multiplication (int)

Large Matrix Multiplication (float)

AthSimulation ATLAS TTbar (1k events)

ATLAS TTbar (10k events)

ATLAS Decaying Charginos (10k events)

ATLAS whatever (25k events)

actually double(*)

Eratostene’s prime numbers sieve in a BASH script, to find primes up to 1 M

- Script inspired by RosettaCode (*) with added multithreading

- It is executed from command line while collecting metrics

BASH Sieve

$./get2IPMI.sh > ipminfo.csv

$./multiSieve.sh

#!/bin/bash
...

((chunk = max / cores))
...

while ((max > num)); do
FILE="${FILENAME}${filenum}.txt"
((prev = num + 1))
((num = prev + chunk))

...
./sieve.sh ${prev} ${nmx} > ${FILE} &

donehttps://rosettacode.org/wiki/Sieve_of
_Eratosthenes#UNIX_Shell

(*)

Job Profiles (bash sieve)

ARM

ARM+GPU

HP Xeon

DELL Epyc

Results (bash sieve)
Looks like the ARM+GPU machine is the best at
finding prime numbers in BASH …

Prime Numbers (bash)

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W)

DELL Epyc 128 17.63 4.450 328 152

HP Xeon 40 23.08 3.142 189 63

ARM 224 31.48 4.551 164 127

ARM+GPU 80 1.80 0.678 425 268 71

GPU subtracted 1.80 0.551 354 197 0

Speed and Power
Other interesting results of this run include
the speed at which primes number are found
(e.g., ARM+GPU is linear!)

Overlapping the power profiles, we can see how
the power draw increases with CPU activity
(e.g., ARM is almost flat)

Eratostene’s prime number sieve in C compiled with OMP to find primes up to 100 M

- Code from the web (*)

- Compiled on each machine with gcc and the OMP library

- It is executed while collecting metrics

C Sieve

$./get2IPMI.sh > ipminfo.csv

$ gcc -fopenmp mtprime.c

$./a.out

#include <omp.h>
...

#pragma omp parallel for schedule(dynamic) reduction(+ : primes)
for (num = 1; num <= limit; num++)
{

...

https://stackoverflow.com/questions/9244481/
how-to-get-100-cpu-usage-from-a-c-program

(*)

Job Profiles (C sieve)

ARM

ARM+GPU

HP Xeon

DELL Epyc

(*)

Re-run (C sieve)
(*) We had to re-run the job on the ARM+GPU machine, because on the first run
we observed weird wobbles in the power usage, probably due to other underlying
processes running on the system …

1st run (power wobbles & high idle ~320 W) 2nd run (less wobbles & lower idle ~270 W)

Results (C sieve)
Also with compiled code, it looks like the ARM+GPU
machine is the best at finding primes …

Prime Numbers C

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W)

DELL Epyc 128 5.32 1.209 234 146

HP Xeon 40 13.29 2.316 177 62

ARM 224 9.17 1.468 168 126

ARM+GPU 80 2.30 0.838 397 277 68

GPU subtracted 2.30 0.710 329 209 0

1sr run (bad)

Large Matrix Multiplication in C with OMP using two 20k x 20k random matrices

- Code is a modified version of a GitHub example (*)

- Compiled with the OMP library and -mcmodel=large flag

- Tried 2 types of matrices: integers and floating point (double)

Large Matrix Multiplication

$./get2IPMI.sh > ipminfo.csv

$ gcc -fopenmp -mcmodel=large matmul.c

$./a.out

#include <omp.h>
...
#define N 20000
...

#pragma omp parallel for private(i,j,k) shared(A,B,C)
for (i = 0; i < N; ++i)
{

for (j = 0; j < N; ++j)
{

for (k = 0; k < N; ++k)
{

C[i][j] += A[i][k] * B[k][j];
https://gist.github.com/metallurgix/
0dfafc03215ce89fc595

(*)

Job Profiles (float Matrix)

ARM

ARM+GPU

HP Xeon

DELL Epyc

Results (matrix)
When memory usage is involved, then the DELL Epyc
outperforms the ARM+GPU in speed and energy efficiency
Float Matrix

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W)

DELL Epyc 128 0.40 0.140 395 152

HP Xeon 40 2.02 0.369 188 65

ARM 224 2.14 0.327 173 128

ARM+GPU 80 1.01 0.455 475 278 68

GPU subtracted 1.01 0.387 354 197 0

Int Matrix

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W)

DELL Epyc 128 0.38 0.118 368 149

HP Xeon 40 1.10 0.199 184 62

ARM 224 2.05 0.299 166 128

ARM+GPU 80 0.72 0.272 393 272 68

GPU subtracted 0.72 0.223 325 204 0

Then we tried using full ATLAS simulation as our next benchmark (#). It has been challenging:

- AthSimulation is a colossal and complex piece of software, and we have very limited
experience with it (*)

- It cannot really run standalone by a non root user …
- It relies on CVMFS (picking up packages from several repo)
- It runs more easily in Singularity

- As a non-initiated ATLAS user, it has been hard to find and select a stable version

- It is not compiled specifically on each machine, but rather centrally in nightly builds,
which eventually disappear after a month

- To achieve multithreading, I have been using a hand-crafted
combination of flags. There was no validation of the produced data.

(#) This was actually the original idea …

(*) So far, we haven’t been much in touch with the ATLAS people in Glasgow.
We will definitely involve them in future developments.

About ATLAS

ATHENA_CORE_NUMBER=128

Sim_tf.py \ …
--simulator 'FullG4MT’
--multithreaded True

Two different physics simulations were used, running samples of 1k and 10k Full G4
events of two different simulation types: TTbar & Decaying Charginos

The chosen version of the software: AthSimulation/22.0.53

ATLAS Simulations

$ export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase

$ alias setupATLAS='source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh’

$ setupATLAS -c centos7

Singularity> asetup AthSimulation,master,r2022-01-29T2101

Singularity> ./TTbar_10k.sh

...

Using AthSimulation/22.0.53 [cmake] with platform aarch64-centos7-gcc8-opt at

/cvmfs/atlas-nightlies.cern.ch/repo/sw/master_AthSimulation_aarch64-centos7-gcc8-opt/2022-01-29T2101

Using AthSimulation/22.0.53 [cmake] with platform x86_64-centos7-gcc11-opt at

/cvmfs/atlas-nightlies.cern.ch/repo/sw/master_AthSimulation_x86_64-centos7-gcc11-opt/2022-01-29T2101

Setting up the ATLAS framework with Singularity and CVMFS:

ARM+GPU

DELL Epyc

AthSimulation Input
#!/bin/sh

export ATHENA_CORE_NUMBER=128
export TRF_ECHO=1
export MAXEVENTS=10000

Sim_tf.py \
--conditionsTag 'default:OFLCOND-MC16-SDR-14' \
--physicsList 'FTFP_BERT_ATL' \
--truthStrategy 'MC15aPlus' \
--simulator 'FullG4MT' \
--postInclude 'default:PyJobTransforms/UseFrontier.py' \
--preInclude
'EVNTtoHITS:SimulationJobOptions/preInclude.BeamPipeKill.py,SimulationJobOptions/preInclude.FrozenS
howersFCalOnly.py' \
--preExec 'EVNTtoHITS:simFlags.TightMuonStepping=True' \
--DataRunNumber '284500' \
--geometryVersion 'default:ATLAS-R2-2016-01-00-01' \
--inputEVNTFile "/cvmfs/atlas-nightlies.cern.ch/repo/data/data-
art/SimCoreTests/valid1.410000.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_nonallhad.evgen.EVNT.e4993
.EVNT.08166201._000012.pool.root.1" \
--outputHITSFile "TTbar2022.HITS.pool.root" \
--imf False \
--maxEvents $MAXEVENTS \
--multithreaded True

TTbar_10k.sh

#!/bin/sh

export ATHENA_CORE_NUMBER=128
export TRF_ECHO=1
export MAXEVENTS=10000

Sim_tf.py \
--conditionsTag 'default:OFLCOND-MC16-SDR-14' \
--physicsList 'FTFP_BERT_ATL' \
--truthStrategy 'MC15aPlusLLP' \
--simulator 'FullG4MT' \
--postInclude 'default:PyJobTransforms/UseFrontier.py' \
--preInclude
'EVNTtoHITS:SimulationJobOptions/preInclude.BeamPipeKill.py,SimulationJobOptions/preInclude.FrozenS
howersFCalOnly.py' \
--DataRunNumber '284500' \
--geometryVersion 'default:ATLAS-R2-2016-01-00-01' \
--inputEVNTFile "/cvmfs/atlas-nightlies.cern.ch/repo/data/data-
art/SimCoreTests/mc15_13TeV.448307.MGPy8EG_A14N23LO_mAMSB_C1C1_5000_208000_LL4p0_MET60.evgen.EVNT.e
6962.EVNT.15631425._000001.pool.root.1" \
--outputHITSFile "DeCh_HITS.pool.root" \
--maxEvents $MAXEVENTS \
--imf False \
--multithreaded True

DeCh _10k.sh

/cvmfs/atlas-nightlies.cern.ch/repo/sw/master_AthSimulation_x86_64-centos7-
gcc11-opt/2022-01-29T2101/AthSimulation/22.0.53/InstallArea/x86_64-centos7-
gcc11-opt/bin/test_RUN3_FullG4_ttbar_2evts.sh

Job Profiles (ATLAS 10k)

ARM+GPU

DELL Epyc

TTbar

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W) Above Idle (kW*h)

DELL Epyc 128 2.45 0.858 371 150 0.4908

ARM+GPU 80 2.48 1.114 474 274 67 0.4338

GPU subtracted 2.48 0.949 407 207 0 0.0000

Charginos

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W) Above Idle (kW*h)

DELL Epyc 128 1.60 0.555 370 148 0.3182

ARM+GPU 80 1.86 0.811 465 263 69 0.3223
GPU subtracted 1.86 0.683 396 194 0 0.0000

Results (ATLAS 10k)
In both cases, the execution time is very similar. The
DELL Epyc machine looks slightly more energy efficient.

Results (ATLAS 10k)
To account for the different idle consumption, we can subtract it from the
total and compare the energy in excess of idle (above idle):

…

TTbar

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W) Above Idle (kW*h)

DELL Epyc 128 2.45 0.858 371 150 0.4908

ARM+GPU 80 2.48 1.114 474 274 67 0.4338

GPU subtracted 2.48 0.949 407 207 0

Charginos

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W) Above Idle (kW*h)

DELL Epyc 128 1.60 0.555 370 148 0.3182

ARM+GPU 80 1.86 0.811 465 263 69 0.3223

GPU subtracted 1.86 0.683 396 194 0

When we subtract the idle, the ARM+GPU machine looks slightly more efficient.

However, this procedure might be questionable …

More Results (ATLAS 1k)

Here some more numbers from a clean run of a TTbar
simulation (1k events) on DELL Epyc and ARM+GPU
TTbar 1k

Machine threads Time (h) Tot. Energy (kW*h) Peak Power (W) Idle (W) GPU (W) Above Idle (kW*h)

DELL Epyc 128 0.63 0.197 366 152 0.1007

ARM+GPU 80 0.69 0.278 468 275 67 0.0879

GPU subtracted 0.69 0.232 401 208 67 0.0000

DELL Epyx ARM+GPU

TTbar 1,000 1,000events

Total time: 00 00:38:00 00 00:41:31min

2,280 2,491sec

Per event: 2.2800 2.4910sec/event

0.44 0.40event/sec

Total energy: 709,200.00 1,001,640.00Joules

0.20 0.28kW*h

Energy/Event: 709.20 1,001.64J/event

0.1970 0.2782W*h/event

Average Power 307.01 402.27W

Max Power 366.00 468.00W

Min Power 151.00 268.00W

Idle (estimate) 152.00 275.00W

GPUs (average) 67.27W

Idle subtracted: 152.00 275.00W

Total energy: 362,640.00 316,615.00Joules

0.10 0.09kW*h

Energy/Event: 362.64 316.61J/event

0.101 0.09W*h/event

Average Power 155.01 127.27W

GPU subtracted: 67.27W

GPU Total: 167,499.30Joules

0.05kW*h

Total energy: 834,140.70Joules

0.23kW*h

Energy/Event: 834.14J/event

0.23W*h/event

Average Power 335.00W

(*) The energy/event tends to decrease with a larger simulation.
E.g., total energy of the 10k simulation is about 4 times the 1k …

(*)

It was a nice exercise, but there aren’t many conclusions at this stage …

✓ Results show that the ARM+GPU machine is quicker at pure calculations,
while DELL Epyc machines is generally faster and more power efficient
when memory usage is involved (large matrices, ATLAS simulations)

✓ In general, the performance differences between comparable machines
(DELL Epyc & ARM+GPU) are small for ordinary tasks

➢ This kind of comparison may be inconclusive (see “Limitations” slides)

➢ We did not involve ATLAS people as much as we could have (e.g., to select
a proper software version and type of job to execute)

‽ If the study should continue, it would be good to have more similar hardware
to compare (e.g., same machines with different CPU) and direct access to
them, including the ability to use a physical metered PDU

Conclusions & Outlook

Thanks.

Dr. Emanuele Simili GridPP47 Durham, 23rd March 2022

