
Storage Developments at
Edinburgh

Storage
Development

User Facing Developments:

• DUNE Rucio monitoring

• Centralized distributed XCache monitoring
dashboard

• LSST Rucio monitoring (WIP)

Work behind the scenes:

• Better protocol support (S3 in Rucio)

• Tool/service debugging/fixes (XRootD)

• StashCache service (another XRootD service)

• Monitoring framework(s) building/design

Monitoring
for Rucio

• Storage system health

• Summary of SEs, data location, accounting etc.

• Trace data transferring activities

• Data access pattern analysis

Rucio as a Service

• Deployed Rucio monitoring for DUNE, running
as a remote DUNE Rucio monitoring site

• Now Deploying a Rucio monitoring system for
LSST

VO support work in Edinburgh

DUNE Transfer/deletion monitoring

DUNE Transfer/deletion monitoring

Early Stage LSST Rucio monitoring

Monitoring
Rucio activity

• Graphite metrics sent by Rucio core and various daemons

Internal metrics

• Transfer status: submitted, queued, waiting, done or failed
messages are sent to a message queue via Hermes

• Messages then dumped into ElasticSearch to be visualised using
Kibana/Grafana

• Hermes2 can send messages to ElasticSearch directly

Transfer/deletion monitoring

• Trace data are recorded in the Rucio internal database

• DIDs (data identifier), Replicas (data location), Accounting (RSEs,
user accounts) …

• DB tables are dumped to Edinbrugh ElasticSearch cluster
periodically to be visualised

• Daily dumps from FNAL for DUNE, from SLAC for LSST

File/dataset/accounting trace

DUNE Rucio Monitoring infrastructure

Rucio

PostgreSQL

RabbitMQ Kafka Elasticsearch

Grafana

Kibana

Graphite

Logstash Elasticsearch Kibana

Edinburgh Monitoring Site

daily
ingest

Recent
core-Rucio

developments

New communities have been happy with
their adoption of Rucio for distributed file-
management.

• One of Rucio’s advantages is its ability to
plug into an external infrastructure

• To avoid fragmentation and reduce VO-
specific code within Rucio “Policy Packages”
have been developed

• Supporting this has required cross-VO
collaboration/investment as well as
documentation to support the community

• DUNE was one of the first customers of this

Recent
core-Rucio

developments
(2/2)

• Policy Packages for DUNE has allowed them
to customize their Rucio deployment

• One of the key things is that this package
allows DUNE to integrate Rucio with their
Metacat service to have custom LFN2PFN
mappings

• We have also worked to support “s3” as a
first-class protocol within Rucio

• In addition to this, working with DUNE and
other communities there is an ongoing effort
to reduce the requirements of the rucio-
clients which benefits multiple-VOs

XRootD
Behind the

Scenes

This protocol/service is widely tested/used/relied-on
across HEP which allows us to manage data at scale
using X509 based authentication/security.

• Service has recently undergone a major behind the
scenes re-write with long-term support in mind

• Evolving landscape is putting new requirements on
this service (as well as others!), e.g. token support,
macaroons, etc…

• Some corner-cases are starting to creep in regarding
XRootD and advanced configurations/setups.
IMO this emphasises that more testing and more
eyes/development is needed

XRootD as a
Service

• XRootD as a service has some long-term stability issues

• Common to restart it as a service ~every 24hr
(Ideally this shouldn’t be needed)

• Debugging crashes at Edinburgh we’ve identified a lot of
problems as being related to the CentOS7-host (specifically
OpenSSL-1.0.2)

• We’re working to understand the full impact of this, but
will likely advise an OS upgrade for XCache services once
we’ve finished looking into this in more detail…

• Main advantage of this has been developing a familiarity
with the XRootD framework codebase and build system

• Plan is to optimise the behaviour of our XCache by
combining ML/AI heuristics with XRootD to improve file
caching/purging decisions

XCache Filesystem Monitoring

StashCache
Service

• StashCache is used by some VOs such as DUNE as an
alternative to CVMFS when transferring large files in a
similar way to WN (http over XRootD)

• To support this, we have deployed a testing instance
at Edinburgh

• Installing this from scratch required working with the
OSG such that Edinburgh and the cache are registered
in the appropriate systems

• Setting this up is a relatively simple process as the
service is based on XRootD+plugins from an OSG repo

• Monitoring this will require us to fall back on our
experiencing monitoring other services at the site

Production
Monitoring at

Edinburgh

• Currently Supporting DUNE and LSST VOs
as well as XCache-UK monitoring using
single ELK stack

• https://monitoring.edi.scotgrid.ac.uk/

• Notionally “small” hardware
requirements, so running on retired
storage node for now

• Ingesting data both directly and via a
RabbitMQ messaging system

https://monitoring.edi.scotgrid.ac.uk/

https://monitoring.edi.scotgrid.ac.uk/

Production
Monitoring at

Edinburgh
(2/2)

• Have discovered more tasks could be
simplified by improving our site monitoring

• Plan to use same infrastructure to support
our local HEP group by ingesting clean-room
monitoring data feeds into our ELK stack for
remote/centralised monitoring of air-quality
https://gitlab.cern.ch/guescini/canary/-
/wikis/home

• Our production ELK stack was our first
attempt at building a monitoring stack.

Can we now do better?

https://gitlab.cern.ch/guescini/canary/-/wikis/home

Building a new
Monitoring

Stack

• Since we deployed our ELK cluster, the OpenSearch fork
has gained popularity.

• We have recently tested a new OpenSearch based cluster
for comparison to ELK.

• Behind the scenes there are battles going on between
OpenSearch-(Amazon.com) and ELK-(elastic.io).

Who can win over most of the community/ industry-
customers?

• My quick summary is:

IMO OpenSearch offers more to us as a community
(HEP/GridPP). I’m aware there are some larger
deployments being planned reflecting this.

This has less emphasis on paid-for features, and we’re
interested in potentially developing our own tooling atop
these tools already used in industry.

Edinburgh OpenSearch Firewall Dashboard

Conclusions

• We are supporting DUNE and LSST with monitoring of their RUCIO services and
extracting high-level data from their systems

• Built a system for remote monitoring of XRootD instances, will be watching how this
compares to the new WLCG XRootD monitoring system, we may also find having a
GridPP instance useful for different reasons

• Have developed a familiarity with different monitoring technologies and how to
integrate them successfully (and lots of what not to do… see backups for more)

• Are working closely with different VOs to support tooling required for many
different storage workflows and different uses of Rucio

BACKUPS

Production
Monitoring at

Edinburgh

• Original ELK stack was setup circa 2016 to meet a
minimally defined set of requirements

• Containerised deployment has helped in
upgrading/maintaining

• Have learned a lot more since then about ELK
systems as well as best practice when deploying
similar technologies

• ElasticSearch is like a large database in many
ways

• Good Kibana use requires a good understanding
of the whole ELK model

• Ingesting data is difficult to get right, there is
logstash, but this has proven difficult to
use/maintain (based on our testing)

Why does
Monitoring

Infrastructure
Design Matter?

1. Well defined things I know about.

CPU/Memory usage?
How many logins have there been?
What is the IP of the incoming connection?

For situations like this you have: schema-on-write

2. Things that aren’t known in advance.

How did X happen?
What happened during a (security) incident?
What went wrong in an unexpected way when …?

For these situations you can use: schema-on-read

Monitoring
Infrastructure

Fair to say that “monitoring” and “big data” are on a collision
course. (Some would say they have already collided)

If care isn’t taken, can quickly end up with a very fragmented
ecosystem, however still no 1 tool meets all requirements.

“Newest” players in system monitoring are:

1. PLG (Prometheus Loki Grafana)

2. ELK (ElasticSearch LogStash Kibana)

3. OFD (OpenSearch FluentD Dashboards)

Which Infrastructure Should I use?
PLG ELK OFD

Pros

• Easy to Setup
• Simple user-interface
• Lots of shared projects

from community
(drag&drop solutions)

• Simple non privileged
exporter

• Tested with industry experience
• Advanced tooling available
• Allows examining data post-

collection schema-on-read
• http(s) based protocol for all access

• Active open development across
multiple projects

• Features such as anomaly detection
built-in (for free!)

• Strong backing from industry projects
• Builds atop experience from ELK
• Allows examining data post-collection

schema-on-read

Cons

• Ecosystem built around
schema-on-write

• Scalability more difficult

• Licensing is difficult/annoying
• Advanced features are not-free in

cost of freedoms
• Complex/Difficult permissions

model(s)
• Complex UI/management
• Increasingly cloud-orientated model

• Ecosystem is evolving rapidly
• Complex/Difficult permissions

model(s)
• Compatibility issues regarding ELK
• Exporting/ingesting data is potentially

difficult

So, what
monitoring

should I use?

Not a straight-forward question to answer.
Ultimately, whatever works best for you.

• For well defined metrics, PLG is such a
pleasant experience to setup/use I still
recommend it

• For ingesting logs and searching them after-
the-fact I would seriously push you to OFD

• FluentD is potentially a much better tool
than logstash IMO and offers much more
flexibility in setting up data ingestion

