

Supersymmetric mass spectra and the seesaw scale

Laslo Reichert, Universidad Valencia - C.S.I.C

AHEP Group IFIC - Instituto de Física Corpuscular C.S.I.C - Universitat València

> Planck Lisbon, June 1, 2011

based on: JHEP05(2011)086 (Martin Hirsch, Werner Porod)

Outline

- Models
- Observables (LHC and ILC)
- Results
- Yukawa couplings and LFV
- Conclusions

Basic structure:

mSUGRA ($m_0, M_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)$) "embedded" in SU(5) + Seesaw:

Seesaw I (Adding singlet)

$$W_{SSI} = \hat{N}^c Y_{\nu} \hat{L} \cdot \hat{H}_u + \frac{1}{2} \hat{N}^c M_R \hat{N}^c$$

Seesaw II (Adding 15-plet)

$$\begin{split} 15 &= S(6,1,-2/3) + T(1,3,1) + Z(3,2,1/6)) \\ W_{SSII} &= \frac{1}{\sqrt{2}} (Y_T \hat{L} \hat{T}_1 \hat{L} + Y_S \hat{D}^c \hat{S}_1 \hat{D}^c) + Y_Z \hat{D}^c \hat{Z}_1 \hat{L} \\ &+ \frac{1}{\sqrt{2}} (\lambda_1 \hat{H}_d \hat{T}_1 \hat{H}_d + \lambda_2 \hat{H}_u \hat{T}_2 \hat{H}_u) + M_T \hat{T}_1 \hat{T}_2 + M_Z \hat{Z}_1 \hat{Z}_2 + M_S \hat{S}_1 \hat{S}_2 \end{split}$$

Seesaw III (Adding 24-plet)

 $\left(24 = B_M(1,1,0) + G_M(8,1,0) + W_M(1,3,0) + X_M(3,2,-5/6) + \bar{X}_M(\bar{3},2,5/6)\right)$

$$\begin{split} W_{SSIII} &= \widehat{H}_u(\widehat{W}_M Y_W - \sqrt{\frac{3}{10}} \widehat{B}_M Y_B) \widehat{L} + \widehat{H}_u \widehat{X}_M Y_X \widehat{D}^c \\ &+ \frac{1}{2} M_B \widehat{B}_M \widehat{B}_M + \frac{1}{2} M_G \widehat{G}_M \widehat{G}_M + \frac{1}{2} M_W \widehat{W}_M \widehat{W}_M + M_X \widehat{X}_M \widehat{X}_M. \end{split}$$

$$\begin{split} m_{\nu} &= -\frac{v_{u}^{2}}{2} Y_{\nu}^{T} M_{R}^{-1} Y_{\nu} \qquad m_{\nu} = \frac{v_{u}^{2}}{2} \frac{\lambda_{2}}{M_{T}} Y_{T} \qquad m_{\nu} = -v_{u}^{2} \frac{4}{10} Y_{W}^{T} M_{W}^{-1} Y_{W} \\ (M_{R} \simeq 10^{15} \text{ GeV}) \qquad (\frac{M_{T}}{\lambda_{2}} \simeq 10^{15} \text{ GeV}) \qquad (M_{W} \simeq 8 \times 10^{14} \text{ GeV}) \\ (\text{for Yukawas of } \mathcal{O}(1) \text{ and } m_{\nu} \sim \sqrt{\Delta m_{A}^{2}} \sim 0.05 \text{ eV}) \end{split}$$

1-loop RGEs for gauge couplings ($M_{\rm GUT}
ightarrow m_{SS}$)

$$\alpha_i(M_G) = \frac{\alpha_i(m_{SS})}{1 - \frac{\alpha_i(m_{SS})}{4\pi}(b_i + \Delta b_i)\log\frac{M_{\text{GUT}}^2}{m_{SS}^2}}$$

$$b_i = (b_1, b_2, b_3)^{MSSM} = (\frac{33}{5}, 1, -3)$$

- Seesaw I $\Delta b_i = 0$
- Seesaw II $\Delta b_i = 7$ (one 15-plet/ $\overline{15}$ -plet)
- Seesaw III $\Delta b_i = 15$ (three 24-plets)

Observables

Dependence of slepton and squark masses on m_{SS}

 \rightarrow Seesaw II and III pushes SUSY masses to smaller values!

 \rightarrow MSP-1 (70, 400, 10, -300), MSP-2 (220, 700, 30, 0), MSP-3 (120, 720, 10, 0)

Observables LHC Observables

 \rightarrow In R_P LHC does not measure SUSY masses directly

- \rightarrow Signal: Two opposite sign leptons + jets + missing energy
 - Edges: $(m_{ll})^{\rm edge}, (m_{lq})^{\rm edge}_{\rm low}, (m_{lq})^{\rm edge}_{\rm high}, (m_{llq})_{\rm edge} \text{ and } (m_{llq})_{\rm thresh}$
 - Mass differences:

$$m_{ ilde{g}}-m_{ ilde{b}_i}$$
 with $i=1,2$, $m_{ ilde{q}_R}-m_{\chi^0_1}$ and $m_{ ilde{l}_L}-m_{\chi^0_1}$

Observables

ILC Observables

- \rightarrow direct measurement of SUSY masses
- \rightarrow much smaller erros on SUSY masses than at LHC
 - We assume these masses accessible:

 $m_{\chi_1^0}, m_{ ilde{e}_R} \simeq m_{ ilde{\mu}_R}$ and $m_{ ilde{e}_L} \simeq m_{ ilde{\mu}_L}$

 $m_{ ilde{ au}_1}, m_{\chi^0_2}, m_{\chi^+_1} ext{ and } m_{ ilde{t}_1}$

We assume for all the calculations that the lighter Higgs h_0 has been found.

 $\chi^2\text{-distrib.}$ for a random walk letting $m_0, M_{1/2}, \tan\beta, A_0$ and m_{SS} float freely

 $(m_0 = 70, M_{1/2} = 400, \tan \beta = 10, A_0 = -300, m_{SS} = 5 \times 10^{13})$

 $ightarrow m_0, M_{1/2}$ and m_{SS} are highly correlated among each other

Errors of $m_0, M_{1/2}$ and m_{SS} against m_{SS} for LHC + ILC (Seesaw II)

Seesaw II (M_0 : 70, $M_{1/2}$: 400, tan β : 10, A_0 : -300)

Seesaw II (M_0 : 70, $M_{1/2}$: 400, tan β : 10, A_0 : -300)

 \rightarrow errors depend strongly on m_{SS} \rightarrow distinguishable from mSUGRA for: $m_{SS} \lesssim 8 \times 10^{14} \ {\rm GeV} \ {\rm for} \ 3\sigma \ {\rm c.f.}$ $m_{SS} \lesssim 5 - 6 \times 10^{14} \ {\rm GeV} \ {\rm for} \ 5\sigma \ {\rm c.f.}$

Errors of $m_0, M_{1/2}$ and m_{SS} against m_{SS} for LHC obs. only (Seesaw II)

Seesaw II (m0: 120, M1/2: 720, tan 3: 10, A0: 0)

Seesaw II (m_0 : 120, $M_{1/2}$: 720, $\tan\beta$: 10, A_0 : 0)

 \rightarrow distinguishable from mSUGRA for: $m_{SS} \lesssim 10^{14} \ {\rm GeV} \ {\rm for} \ 1\sigma \ {\rm c.f.}$

 \rightarrow All errors much larger than for LHC+ILC

ASTROPARTICLES

Yukawa couplings and LFV

Yukawa couplings and type-II seesaw

Seesaw II (m_0 : 70, $M_{1/2}$: 400, $\tan\beta$: 10, A_0 : -300)

 \rightarrow up to $m_{SS} \sim 10^{14}~{\rm GeV}$ Yukawa couplings can be neglected

Conclusions

LHC + ILC

- It is possible to distinguish pure mSUGRA from mSUGRA plus type-II/III seesaw for nearly any relevant value of the seesaw scale
- \to at least $\chi^0_1,\, \tilde{e}_R$ / $\tilde{\mu}_R$ and \tilde{e}_L / $\tilde{\mu}_L$ kinemetically accessible

LHC

- With LHC pure mSUGRA is only distinguishable from mSUGRA plus type-II/III seesaw in some favourable parts of parameter space
- \rightarrow small uncertainties of Edges and $m_{\tilde{g}} m_{\tilde{h}_1}$ are very important

Thank you for your attention

Seesaw I (Adding singlet)

$$W_{\rm RHN} = \mathbf{Y}_N^{\rm I} N^c \cdot \overline{5} \cdot 5_H + \frac{1}{2} M_R N^c N^c$$

Seesaw II (Adding 15-plet)

$$\begin{split} W_{15} = & \frac{1}{\sqrt{2}} \mathbf{Y}_N^{\text{II}} \bar{\mathbf{5}} \cdot \mathbf{15} \cdot \bar{\mathbf{5}} + \frac{1}{\sqrt{2}} \lambda_1 \bar{\mathbf{5}}_H \cdot \mathbf{15} \cdot \bar{\mathbf{5}}_H + \frac{1}{\sqrt{2}} \lambda_2 \mathbf{5}_H \cdot \overline{\mathbf{15}} \cdot \mathbf{5}_H \\ & + \mathbf{Y}_5 \mathbf{10} \cdot \bar{\mathbf{5}} \cdot \bar{\mathbf{5}}_H + \mathbf{Y}_{10} \mathbf{10} \cdot \mathbf{10} \cdot \mathbf{5}_H + M_{15} \mathbf{15} \cdot \overline{\mathbf{15}} + M_5 \bar{\mathbf{5}}_H \cdot \mathbf{5}_H \end{split}$$

Seesaw III (Adding 24-plet)

$$\begin{split} W_{24_{M}} = & \sqrt{2} \, \mathbf{Y_{5}} \bar{5} \cdot 10 \cdot \bar{5}_{H} \, - \frac{1}{4} \mathbf{Y_{10}} 10 \cdot 10 \cdot 5_{H} + Y_{N}^{III} 5_{H} \cdot 24_{M} \cdot \bar{5} \\ & + \frac{1}{2} 24_{M} M_{24} 24_{M} \end{split}$$

Running of $1/\alpha_1, 1/\alpha_2$ and $1/\alpha_3$ for mSUGRA plus type-II seesaw

- \rightarrow Adding complete 15/24-plet maintains gauge coupling unification!
- \rightarrow for $m_{SS}=M_{GUT}$ we recover usual "mSUGRA spectra"

Observables

• Lower bound on m_{SS}

Dependence of $\alpha(M_{GUT})$ on m_{SS} for type-II and type-III seesaw

 \rightarrow Pertubativity of $\alpha(M_{GUT})$ gives lower limit on m_{SS}

Upper bound on m_{SS}

 \rightarrow for $m_{SS}\gtrsim 10^{15}$ Yukawa couplings become non-perturbative

Variable	Value (GeV)	Error (GeV)
m_{ll}^{max}	77.07	0.08
m_{llq}^{max}	428.5	4.5
m_{lq}^{low}	300.3	3.1
m_{lq}^{high}	378.0	3.9
$m_{llq}^{\hat{m}in}$	201.9	2.6
m_{llb}^{min}	183.1	4.1
$m(\tilde{l}_L) - m(LSP)$	106.1	1.6
$m_{ll}^{max}(\chi_4^0)$	280.9	2.3
$m_{ au au}^{max}$	80.6	5.1
$m(\tilde{g}) - 0.99 \times m(LSP)$	500.0	6.4
$m(\tilde{q}_R) - m(LSP)$	424.2	10.9
$m(\tilde{g}) - m(\tilde{b}_1)$	103.3	1.8
$m(\tilde{g}) - m(\tilde{b}_2)$	70.6	2.6

Particle	Mass	"LHC"	"ILC"	"LHC+ILC"
h^0	116.0	0.25	0.05	0.05
H^0	425.0		1.5	1.5
$ ilde{\chi}_1^0$	97.7	4.8	0.05	0.05
$ ilde{\chi}_2^0$	183.9	4.7	1.2	0.08
$ ilde{\chi}_4^0$	413.9	5.1	3 - 5	2.5
$\tilde{\chi}_1^{\pm}$	183.7		0.55	0.55
\tilde{e}_R	125.3	4.8	0.05	0.05
\tilde{e}_L	189.9	5.0	0.18	0.18
$ ilde{ au}_1$	107.9	5 - 8	0.24	0.24
\tilde{q}_R	547.2	7 - 12	—	5 - 11
$ ilde q_L$	564.7	8.7	—	4.9
${ ilde t}_1$	366.5		1.9	1.9
${ ilde b}_1$	506.3	7.5	—	5.7
\tilde{g}	607.1	8.0	—	6.5

Observables

Dependence of LHC Observables on m_{SS}

Seesaw II ($M_0: 70, M_{1/2}: 400, \tan\beta: 10, A_0: -300$)

Seesaw II (M_0 : 70, $M_{1/2}$: 400, tan β : 10, A_0 : -300)

Seesaw II (m_0 : 70, $M_{1/2}$: 400, tan β : 10, A_0 : -300)

Seesaw II (m0: 70, M1/2: 400, tan3: 10, A0: -300)

Seesaw II (m_0 : 70, $M_{1/2}$: 400, $\tan\beta$: 10, A_0 : -300)

Errors of $m_0, M_{1/2}$ and m_{SS} against m_{SS} for LHC + ILC (Seesaw III)

Seesaw III (m_0 : 70, $M_{1/2}$: 400, $\tan\beta$: 10, A_0 : -300)

Seesaw III (m_0 : 70, $M_{1/2}$: 400, tan β : 10, A_0 : -300)

Seesaw III (m_0 : 70, $M_{1/2}$: 400, $\tan\beta$: 10, A_0 : -300)

- ightarrow errors depend strongly on m_{SS}
- \rightarrow distinguishable from mSUGRA for:

 $m_{SS} \lesssim 6-7 imes 10^{15}$ GeV for 1σ c.f.

ightarrow change in scale m_{SS}

Errors of $m_0, M_{1/2}$ and m_{SS} against m_{SS} for LHC obs. only (Seesaw III)

Seesaw III ($m_0: 120, M_{1/2}: 720, \tan\beta: 10, A_0: 0$)

 \rightarrow distinguishable from mSUGRA for:

 $m_{SS} \lesssim 5 \times 10^{14}~{\rm GeV}$ for 1σ c.f.

 \rightarrow All errors much larger than for LHC+ILC

Dependence of SUSY masses on m_{SS}

- \rightarrow As function of m_{SS} mass ordering changed!
- \rightarrow "Edge variables" crucial for LHC

Seesaw II ($m_0: 70, M_{1/2}: 400, \tan\beta: 10, A_0: -300$)

Seesaw II ($m_0: 70, M_{1/2}: 400, \tan\beta: 10, A_0: -300$)

Seesaw II ($m_0: 70, M_{1/2}: 400, \tan\beta: 10, A_0: -300$)

Observables and Uncertainties

Switching off different ILC observables (LHC + ILC obs.)

- \rightarrow measuring left-slepton masses is highly important
- \rightarrow for $m_{SS} \lesssim 10^{14}~{\rm GeV}~\chi^0_1$ and \tilde{l}_R are "sufficient"
- $\rightarrow \tilde{t}_1$ has almost no influence on Δm_{SS}

Observables and Uncertainties

Switching off different LHC observables (LHC obs. only)

Seesaw II ($m_0: 70, M_{1/2}: 400, \tan\beta: 10, A_0: -300$)

- \rightarrow Edges and $m_{\tilde{g}}-m_{\tilde{b}_1}$ are the most important observables
- \rightarrow but: Higgs mass is not negligible

Yukawa couplings and LFV

LFV in mSUGRA plus type-I and type-III seesaw

- \rightarrow Note: Cancellations independent of any low-energy neutrino physics can be found
- \rightarrow No predictions of LFV possible
- \rightarrow but: Observation of LFV \rightarrow constraints on RH sector

Seesaw II ($m_0: 70, M_{1/2}: 250, \tan\beta: 10, A_0: -300$)

 2×10^{16}

 10^{16}

 $69 \\ 7 \times 10^{15}$

Seesaw III ($m_0: 70, M_{1/2}: 250, \tan\beta: 10, A_0: -300$)

Motivation

Neutrino oscillation experiments:

- \rightarrow Neutrino masses are non-zero:
 - Δm^2_{\odot} : 7.59 [10⁻⁵ eV²], $\Delta m^2_{\rm atm}$: 2.40 [10⁻³ eV²]
 - $\sin^2 \theta_{\odot}$: 0.318, $\sin^2 \theta_{\text{atm}}$: 0.50, $\sin^2 \theta_{13}$: 0.013

If lepton number is violated:

- \rightarrow Many possible models:
 - Seesaw mechanism:
 - Type I: Exchange of fermion singlet
 - Type II: Exchange of scalar triplet
 - Type III: Exchange of fermion triplet
 - Inverse seesaw, ...
 - Radiative models

Motivation

• SM + Seesaw:

ightarrow No experimental signal apart from the neutrino masses themselves

SUSY + Seesaw:

- → Indirect information about seesaw parameters from:
 - Lepton flavor violating (LFV) decays
 - Superpartner mass measurements

• SUSY "embedded" in SU(5) + Seesaw:

- \rightarrow Same features as in SUSY + Seesaw
- → Adding complete SU(5) representations maintains gauge coupling unification

Motivation

Is it possible to find signatures of Seesaw in SUSY spectra with mSUGRA boundary conditions?

- \rightarrow How sensitive is the LHC?
- \rightarrow ILC is needed?