Precise predictions for Higgs production via gluon fusion in BSM scenarios

Elisabetta Furlan BNL

PLANCK 2011

From the Planck Scale to the ElectroWeak Scale

Instituto Superior Técnico (157), Linoue d 30 May – 3-June 2011

June 1st 2011

 gluon fusion is the main mechanism for Higgs production at hadron colliders

Motivation

- gluon fusion is the main mechanism for Higgs production at hadron colliders
- it is sensitive to any coloured particle that couples to the Higgs, e.g. the top

 extensions of the SM require new particles which may contribute to gluon fusion

this channel is very sensitive to new physics effects

Gluon fusion in the SM

it is known very precisely...

... but it required tough calculations

Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven

Gluon fusion in the SM

it is known very precisely...

 * ... and it required an heavy-quark effective theory (HQET) approach
⇒ integrating out the top quark

(Chetyrkin, Kniehl, Steinhauser)

Gluon fusion in BSM

* Only very recent NNLO calculations in some BSM scenarios scalar octects (Boughezal, Petriello); fourth generation (Anastasoiu, Boughezal, EF; Anastasoiu, Buehler, EF, Herzog, Lazopoulos); MSSM (Pak, Steinhauser, Zerf)

- * The low-energy theory is the same as in SM HQET, but the matching calculation at NNLO is much more complicated:
 - number of diagrams (~10³ 10⁴)
 - renormalization (e.g., new vertices)
 - dependence on multiple mass scales

Separating new physics

- we can construct an effective theory that contains only the light degrees of freedom of the Standard Model
 - particles that are heavier than half the Higgs mass are integrated out

⇒ obtain an effective gluon-gluon-Higgs vertex

Four-generation SM

(Anastasoiu, Boughezal, EF; Anastasoiu, Buehler, EF, Herzog, Lazopoulos)

- * we have the tools to compute the Higgs production cross section via gluon fusion at the same level of accuracy as in the SM
- "complication": at NNLO we have diagrams containing two different heavy quarks

integrals with up to two, different, massive propagators

Four-generation SM

(Anastasoiu, Boughezal, EF; Anastasoiu, Buehler, EF, Herzog, Lazopoulos)

- * the NNLO cross section is 10-15% higher than the NLO cross section
- * the theoretical error decreases from 20-30% at NLO to 10% at NNLO
- * these results can be used by the experimental collaborations to put accurate constraints on the mass of the Higgs boson in a four-generation SM

Composite Higgs models Gerogi, Kaplan; Contino, Nomura, Pomarol; Agashe, Contino, Pomarol; Contino, Da Rold, Pomarol

- * class of models that address the hierarchy problem
- * there is a new, strongly interacting sector responsible for EWSB
- quarks get their masses through mixing with composite fermions of the new sector
 - heavy quarks are largely "composite", so they couple more with the Higgs boson than light quarks
 - couplings to the Higgs boson are reduced with respect to the Standard Model
 - we have new heavy quarks that couple to the Higgs boson

does the Higgs prodction cross section decrease or increase?

Higgs production

- * we can compute the Higgs production cross section through NNLO
- * differences with the Standard Model calculation:
 - two different mass scales can appear together at NNLO
 - Higgs-quark vertex:

$$-\bigvee \qquad \frac{m_q}{v} \to Y_q$$

we need to understand how this vertex renormalizes

Higgs production

 confirm the 30-35% LO suppression (Falkowski) with respect to the Standard Model through NNLO

for
$$m_h = 120 \,\mathrm{GeV}$$
 ,

 $\sigma_{SM} = 17.6 \,\mathrm{pb}$

while σ_{CH} is in the range $5.9 - 6.4 \,\mathrm{pb}$

* as in the SM, the scale variation error reduces from $^{+(27\div33)\%}_{-(19\div23)\%}$ at LO to $^{+(6\div12)\%}_{-(7\div10)\%}$ at NNLO

Higgs production

* K-factors are similar to the Standard Model

LHC, 7 TeV	SM	CHM
$\frac{\sigma^{NLO}_{tbew}}{\sigma^{LO}_{tbew}}$	+ 75%	+ 77 - 78%
$\frac{\sigma_{tbew}^{NNLO}}{\sigma_{tbew}^{LO}}$	+ 106%	+ 108 - 110%

* bottom-quark and two-loop electroweak corrections are more important than in the Standard Model

	SM	CHM
$\frac{\sigma^{LO}_{tb} - \sigma^{LO}_t}{\sigma^{LO}_t}$	- 7%	- 10%
$\frac{\sigma_{tb}^{NLO} - \sigma_t^{NLO}}{\sigma_t^{NLO}}$	- 4%	- 6%
$\frac{\sigma_{tew} - \sigma_t}{\sigma_t}$	+ 5%	+ 7%

Conclusions

- * the Higgs boson is likely to come with some new physics
- * many viable BSM theories exist, and many need to introduce new, coloured particles
- * they can significantly affect the gluon-fusion cross section
- * we adopt an effective theory approach to disentangle new physics from light-flavour QCD
- * we have automatised the matching procedure for BSM models through NNLO
- examples of applications: four-generation Standard Model, composite Higgs model