Phenomenological aspects of the dark matter stability origin

Thomas Hambye Univ. of Brussels (ULB), Belgium

DM is astonishingly stable!

origin of the exceptional DM stability????

determines the basic DM model structure with specific phenomenology

Examples of specific phenomenology

deriving from

DM stabilization mechanisms

DM stability \implies long range forces??

DM stable as for the e⁻: lightest charged particle under a unbroken gauged U(I)
 the simple adjunction of a new QED structure
 for a single fermion gives a viable DM candidate!!

e' \checkmark $\backsim \gamma$ $\alpha', m_{e'}, T'$

 \implies long range force between charged DM e'^{\pm}

- galactic halo morphology modified by DM collisions through Rutherford scatter.
- more collisions in bullet cluster through Rutherford scattering
- damping of small scale structure due to lower kinetic decoupling
- + possible communication with SM through kinetic mixing

Lightest fermion of a secluded sector

Remnant global subgroup of GUT: R-symmetry

Mohapatra 86', Martin 92'

$$\searrow R_m = (-1)^{3(B-L)} \implies \text{R-symmetry is a } Z_2 \text{ subgroup of } U(1)_{B-L}$$

$$a \text{ subgroup of } SO(10)$$

⇒ if $U(1)_{B-L}$ (or SO(10)) is a gauge symmetry and is broken only by vev of fields with even B-L: R-symmetry remains as an exact symmetry $\underbrace{ 10, 45, 54, 120, 126, 210, ...}^{\text{conserved by}}$

→ high energy explanation of R-symmetry ←

not experimentally testable (directly) but severely constrains the GUT model

Aulakh, Melfo, Rasin, Senjanovic 98' Aulakh, Bajc, Melfo, Rasin, Senjanovic 01'

....

DM stability in non-susy SO(10) setups

DM stability from accidental symmetry: DM decay

if DM stable from accidental low energy symmetry we expect it to decay from new physics UV interactions as proton

intriguing coincidence: a GUT scale induced dim 6 operator

cosmic ray fluxes from DM decay of order the observed ones

probe GUT scale physics??

Eichler; Nardi, Sannino, Strumia; Chen, Takahashi, Yanagida; Arvanitaki, Dimopoulos et al.; Bae, Kyae; Hamagushi, Shirai, Yanagida; Arina, TH, Ibarra, Weniger; ...

A smoking gun DM decay signal: intense γ -ray lines

A smoking gun DM decay signal: intense γ -ray lines

Hidden vector: no reason that the custodial sym. not violated in the UV \Rightarrow dim 6 operators:

C.Arina, T.H., A. Ibarra, C. Weniger 10'

(A) $\frac{1}{\Lambda^2} \mathcal{D}_{\mu} \phi^{\dagger} \phi \mathcal{D}_{\mu} H^{\dagger} H$ (B) $\frac{1}{\Lambda^2} \mathcal{D}_{\mu} \phi^{\dagger} \phi H^{\dagger} \mathcal{D}_{\mu} H$ (C) $\frac{1}{\Lambda^2} \mathcal{D}_{\mu} \phi^{\dagger} \mathcal{D}_{\nu} \phi F^{\mu\nu Y}$ (D) $\frac{1}{\Lambda^2} \phi^{\dagger} F^a_{\mu\nu} \frac{\tau^a}{2} \phi F^{\mu\nu Y}$ \checkmark all give 2-body radiative decays $\downarrow \downarrow$ monochromatic γ -rays in particular off the galactic plane!

DM smoking gun!!

(no astrophysical background!)

Annihilation: Bergstrom, Ullio, 97' 98';Bern, Gondolo, Perelstein 97'; Bergstrom, Bringmann, Eriksson, Gustafsson 04', 05'; Boudjema, Semenov, Temes 05'; Jackson, Servant, Shaughnessy, Tait, Taoso 09', ...

one tree level exception: Dudas, Mambrini, Pokorski, Romagnoni 09'

Decay: Buchmuller, Covi, Hamagushi, Ibarra, Tran 07'; Ibarra, Tran 07'; Ishiwata, Matsumoto, Moroi 08'; Buchmuller, Ibarra, Shindou, Takayama, Tran 09'; Choi, Lopez-Fogliani, Munoz, de Austri 09'

Dark Matter

as a

Pseudo Goldstone Boson

stability: pseudo-Goldstone decay suppressed by large spontaneous breaking scale

2 well-known examples: - Axion

Cadamuro, Hasenkamp talks

- DM Majoron

The pseudo-Goldstone stabilization mechanism: Majoron case

Chikashige, Mohapatra, Peccei 81'

 \frown decay width suppressed by large seesaw scale $\bigcup U(1)_{B-L}$ breaking scale

• global $U(1)_{B-L}$ spontaneous breaking scale driven by L=2 scalar field ϕ

$$\mathcal{L} \ni -Y_{ij}N_{Ri}L_{j}H - \frac{1}{2}c_{ij}\phi N_{R_{i}}N_{R_{j}}$$

$$\langle \phi \rangle \equiv f \bigvee$$

$$-\frac{1}{2}M_{Nij}N_{R_{i}}N_{R_{j}}e^{i\theta/f} - \frac{1}{2}c_{ij}\phi' N_{R_{i}}N_{R_{j}}e^{i\theta/f}$$
Majoron
$$\phi = (\phi' + f)e^{i\theta/f}$$

$$M_{Nij} = c_{ij}f$$

Akhmedov, Berezhiani, Senjanovic, Tao 93'

• additional explicit $U(1)_{B-L}$ breaking \longrightarrow Planck effects breaks the global sym. \longrightarrow massive Majoron

(or soft breaking terms, Gu, Ma, Sarkar 10')

 \implies DM massive Majoron stable because it couples only to SM through suppressed $\nu - N_R$ mixing

 $\Gamma(\theta \to \nu\nu) \propto (m_{\nu}/M_N)^4 \propto (m_{\nu}/f)^4$ $\Gamma(\theta \to e^+e^-) \propto \alpha_W (m_{\nu}/M_N)^4 \propto \alpha_W (m_{\nu}/f)^4$

decay suppressed by naturally large seesaw scale

Singlet-triplet DM extension: M. Tortola's talk Beriezinsky,Valle 93, Lattanzi,Valle 07', Bazzocchi, Lattanzi, Riener-Sorensen,Valle 08', Esteves, Joachim, Joshipura, Romao, Tortola,Valle 10'

Frigerio, TH, Masso, 11'

in addition to provide the naturally large stabilizing scale the seesaw \mathcal{L} can also provide:

- the source of explicit symmetry breaking \implies of m_{DM}
- the interactions producing the DM relic density
- with a justification for scalar DM at low scale with a mass radiatively "stable"

> a possibility of a direct link between DM mass and DM relic density

A pseudo-Goldstone link between DM relic density and mass

DM relic density from the Higgs portal: $\mathcal{L} \ni \lambda \ \theta \theta \ H^{\dagger} H$

Frigerio, TH, Masso, 11

other possible realization of collective breaking involving both Majorana and Dirac terms:

example: $Q_{N_1}^X = -1, \, Q_{N_2}^X = 1, \, Q_{\phi}^X = 2, \, Q_{\nu}^X = 1$

NB: - to avoid generation of a DM tadpole, the easiest way is to assume CP symmetry

- if reheating temperature very high and ϕNN couplings large enough the relic density can be produced also from $NN \rightarrow \theta\theta$ pair production

- The origin of particle DM stability is a fundamental question!
 Each UV or low energy scenario requires a very specific pattern in term of type of particle needed, energy scale, ..., which leads to a specific phenomenology
 - long range dark force
 - intense flux of cosmic rays, $\gamma\text{-lines},\dots$
 - GUT specific realizations
 - specific DM mass
 - relic density/DM mass link
 -

• Pseudo-Goldstone setup: seesaw interactions assuming a U(I) flavour symmetry:

- can provide the explicit breaking source $\implies m_{DM}$
- with a one-to-one link between m_{DM} and $\Omega_{DM} \implies m_{DM} = 2.7 \,\mathrm{MeV}$
- that can be probed by $DM \rightarrow \nu\nu$ and $DM \rightarrow e^+e^-$ searches

Backup

DM stability in non-susy SO(10) setups: scalar case

Kadastik, Kannike, Raidal 09'

→ add a I 6 scalar representation:

 $M_{\rm DM}/{\rm GeV}$

 m_{DM} (GeV)

Frigerio, TH 09'

add a 45 or 54 fermion representation:

DM is the neutral component of a fermion triplet Σ^+ , Σ^0 , $\Sigma^$ advantage that the DM triplet can drive gauge coupling unification \downarrow as in split susy but without susy

>> low energy pheno is as for a generic fermion triplet:

- relic density requires $m_{DM}\simeq 2.7\,{
 m TeV}$ Cirelli, Fornengo, Strumia 06'
- $\sigma_{SI}^N \sim 10^{-45} \, {\rm cm}^2$

- indirect detection: - too many antiprotons for explaining $e^+ {\rm excess}$ of Pamela

- $DM DM \rightarrow \gamma \gamma$ expected to give γ -lines with a rate

Hisano et al 04'; Cirelli, Franceschini, Strumia 08' than can be probed at atmospheric Cerenkov telescopes

DM stability from unbroken U(I) gauge group

 \rightarrow as for the e^- : stable because lightest charged particle under a U(I)

the simple adjunction of a new QED structure for a single fermion gives a viable DM candidate!!

> Ackerman, Buckley, Carroll, Kamionkowski 08' Feng, Tu, Yu 08'; Feng, Kaplinghat, Tu, Yu 09' Foot at al. 06'-10'

DM stability from accidental symmetry: Minimal Dark Matter

Hidden vector: relic density

Hidden vector: direct detection

Monochromatic γ -ray lines: a smoking gun for DM

 $\longrightarrow DM DM \rightarrow \gamma\gamma, \gamma Z$ annihilation leads to a monochromatic γ -ray line (not expected in astrophysics background)

 \frown e.g. obtained at one loop level \Rightarrow rather suppressed

Bergstrom, Ullio, 97' 98';Bern, Gondolo, Perelstein 97'; Bergstrom, Bringmann, Eriksson, Gustafsson 04', 05'; Boudjema, Semenov, Temes 05'; Jackson, Servant, Shaughnessy, Tait, Taoso 09', ... one tree level exception: Dudas, Mambrini, Pokorski, Romagnoni 09'

e.g. needs for large boost factor or a TeV DM mass

But what about a γ -ray line from DM decay?????

has been considered from gravitino decay through R-parity violation

Buchmuller, Covi, Hamagushi, Ibarra, Tran 07'; Ibarra, Tran 07'; Ishiwata, Matsumoto, Moroi 08'; Buchmuller, Ibarra, Shindou, Takayama, Tran 09'; Choi, Lopez-Fogliani, Munoz, de Austri 09'

Dimension-6 operators breaking the custodial symmetry

Flux of monochromatic γ -rays

 $0 \le l \le 360^{\circ}, 10^{\circ} \le |b| \le 90^{\circ}$

C. Arina, T.H., A. Ibarra, C. Weniger 09'

but dim-5 operators breaking G-parity are allowed \Rightarrow DM decay would be too fast

- DM stability from small couplings (suppressed by heavy scale) and/or small DM mass:
 - axion
 - KeV right-handed neutrino
 - gravitino
 - ...

P. Sikivie's talk

F. Bezrukov's talk

Servant, Tait 06', ...

- KK parity in Universal Extra Dimension models (assuming orbifold,...)
- $U(1)_{B'}$ in technicolor models

Gudnason, Kouvaris, Sannino 06'

• DM stability from a flavour symmetry

Hirsch, Morisi, Peinado, Valle 10'

More Backup

Relic density

• $T \gtrsim m_V : V_{1,2,3}^{\mu}$ in thermal equilibrium with SM thermal bath $\Rightarrow \begin{array}{l} \eta \text{ with } h : \text{due to } \lambda_m \text{ coupling} \\ V_i \text{ with } \eta : \text{due to } g_\phi \text{ coupling} \end{array}$ • $T < m_V : n_V^{eq.} \sim e^{-m_V/T} \implies$ annihilation freeze out (WIMP) to two real η : with at least one SM part. in final state: $g_{\phi}(+\lambda_{\phi})$ $\lambda_m, g_\phi, ...$ η, h η, h η V_i h, η_{V_i} h,η h, η V_i with subsequent decay of η to SM particles via $h - \eta$ mixing

→ non abelian trilinear gauge couplings:

 \Rightarrow no dramatic effect for the freeze out (same order as other diagrams)

Small Higgs portal regime

Small Higgs portal regime

 $\longrightarrow \lambda_m \lesssim 10^{-3}$ \longleftarrow (but larger than $\sim 10^{-7}$ to have thermalization with the SM bath) $\bigvee V_i V_i \to \eta \eta, V_i V_j \to V_k \eta$ dominant \checkmark depend only on g_{ϕ} , v_{ϕ} , λ_{ϕ} with $m_V = \frac{g_{\phi}v_{\phi}}{2}$, $m_{\eta} \simeq \sqrt{2\lambda_{\phi}}v_{\phi}$ $\lambda_{\phi} = 10^{-1}$ $m_V \,({\rm GeV})$ \Rightarrow if λ_{ϕ} large: 1750 1500 1250 (95) 1000 \mathbf{M}_{A} 750 500 250 1.2 1.4 1.6 1.8 0.8 0.2 0.4 0.6 g_{ϕ}

g_ó

Large Higgs portal regime

large hidden sec- $\rightarrow \lambda_m \gtrsim 10^{-3} \implies \text{large } \eta - h \text{ mixing } \Rightarrow$ tor - SM mixing \rightarrow can lead to the right Ω_{DM} even for maximal mixing $m_{\eta} \,({\rm GeV})$ production at LHC of η just 1250 as for the Higgs in the SM but 1000 with possibly a larger mass M (GeV) 500 T parameter constraint: 250 if $m_h = 120 \,\mathrm{GeV} \implies m_\eta < \sim 240 \,\mathrm{GeV} \,(3\sigma)$ 250 500 1000 M_{A} (GeV) → or larger if non m_V (GeV) maximal mixing

if $m_{\eta} = m_h \Rightarrow m_h = m_{\eta} < 154 \text{ GeV}(3\sigma)$

Hidden vector: direct detection

 \Rightarrow can saturate the experimental bound easily

Hidden vector: cosmic ray fluxes

 $\Rightarrow \phi$ confines: boundstates are eigenstates of the custodial sym.:

- scalar state: $S \equiv \phi^{\dagger} \phi^{\dagger}$ singlet of SO(3) expected the lightest

Relic density in the confined regime

confining non-abelian hidden sector coupled to the SM through the Higgs portal: perfectly viable DM candidate

Expected spectrum (in a similar case)

vector states e.g. expected heavier than scalar ones:

Kajantie, Laine. Rummukainen, Shaposhnikov '96

Possible effects on Electroweak Symmetry Breaking

contribution of the vev of the hidden scalar to the Higgs mass term:

 $\mathcal{L}_{Higgs \ portal} = -\lambda_m \phi^{\dagger} \phi H^{\dagger} H$ $\longrightarrow \exists -\lambda_m v_{\phi}^2 H^{\dagger} H$ gives a contribution to the Higgs vev: $v^2 \propto \frac{\lambda_m}{\lambda_m} v_\phi^2 \propto m_{DM}^2$ gives a hint for the m_{DM} versus v WIMP coincidence

see also T.H, M. Tytgat, arXiv 0707.0633, (PLB 659)