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Plan of the talk
1) Numerical evaluation of the Boltzmann equation 
for non thermal production of dark matter:
- General framework
- Specific framework: G2-MSSM

2) Kinetic equilibrium and decoupling in the G2-
MSSM:
- System of coupled Boltzmann equations for a set of coannihilating 
particles with standard assumptions for the computation of the relic 
density relaxed.
- Computation of kinetic decoupling temperature of a system of 
coannihilating particles. 
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Non thermal production of DM
Cosmological moduli

Only gravitational interactions

Decoupled from the thermal bath

Non thermal production of DM:
The moduli decay producing DM either directly or through a cascade decay

In general they tend do dominate the energy 
density of the Universe

Large entropy injection when they decay (reheating phase)

Deviation from standard cosmology

Mass at least O(10-100) TeV (BBN bound)

Dilution of abundances in the thermal bath

Giorgio Arcadi                                                                                                                                                                    Planck 2011



General Framework
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In case that non thermal production is efficient there is balance 
between production and annihilations.  The relic density 
resembles the standard case with the difference that freeze-out 
occurs at around the reheating temperature. 
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III. NON-THERMAL DM PRODUCTION IN A TOY MODEL AND RELEVANCE FOR PAMELA

We discuss first a minimal framework with a single cosmological modulus X decaying into the DM particle χ.
Rather than detailing a specific particle physics scenario, in this first example we define χ only through its mass
and pair annihilation rate into SM particles, whose thermal average is assumed not to depend on temperature, as
appropriate for S-wave annihilations. We also avoid dealing with eventual other states charged under the quantum
number protecting the stability of χ, assuming that they have a sizable mass splitting with respect to χ, and hence
have very short lifetimes and do not enter in the Boltzmann equation for χ. Under these hypotheses the system of
coupled equations reduces to three equations only: the first for the decaying modulus, the second for number density
of particle χ, sourced from the decay and depleted by pair annihilations, and the last for the temperature.
In this simplified picture, the main trends in the non-thermal DM production can be illustrated even at the level

of approximate analytical formulae; we briefly summarize here some of these features, as we will recover them in the
numerical solution of this model as well as in the more involved scenarios we will consider later (for a more detailed
discussion, see, e.g., [24, 25]). First of all, if the modulus decay induces a large increase in the entropy density and this
happens at a later stage with respect to the chemical decoupling for χ, the thermal relic density of χ is greatly diluted
and can be neglected, with the only relevant χ source being the particles produced in the decay itself. The entropy
injection is a continuos process making the reheating phase last for an extended period during which one can show that
the temperature evolves as T ∝ a−3/8 and the universe expansion rate as H ∝ T 4 [21, 24]. A standard approximation
is however to treat the decay of the field and the thermalization of the products as instantaneous processes, and define
the reheating temperature TRH according to Eq. (2); depending on whether at TRH the dark matter pair annihilation
rate Γ = nχ〈σv〉 is larger or smaller than the expansion rate H , there are two distinct regimes determining the relic
density for χ [6, 26]. If Γ is much larger than H , pair annihilations are very efficient and instantaneously decrease in
the number density of χ to the critical density level corresponding to Γ $ H when the annihilations stop; such critical
density is then simply equal to:

nc
χ $ H

〈σv〉 . (16)

As usually done, we normalize the number density to the entropy density introducing the quantity Yχ = nχ/s, since
when annihilations become inefficient, if there are no further entropy injection phases, such ratio becomes constant
and can be used to estimate the relic density for χ:

ΩNT
χ =

mχs(T0)

ρc(T0)
Yχ(T0) =

mχs(T0)

ρc(T0)
Yχ(TRH) ∝

mχ

〈σv〉TRH
, (17)

where ρc(T0) and s(T0) refer to the Universe critical density and entropy density at present.The rule of thumb Γ $ H
is the same criterium implemented for an approximate estimate of the relic density in the standard thermal decoupling
picture for WIMP dark matter, except that the reference temperature in this latter case is the thermal freeze-out
temperature Tt.f.o. $ mχ/20. Following the same steps, one finds that the thermal relic density ΩT

χ scales with the
inverse of Tt.f.o., and hence that the relations of ΩNT

χ with ΩT
χ and the WIMP pair annihilation cross section are

approximately given by:

ΩNT
χ h2 $ Tt.f.o.

TRH
ΩT

χh
2 $ mχ/20

TRH
· 3 · 10

−26 cm3 s−1

〈σv〉 . (18)

A particle χ whose thermal relic density is small compared to the DM density because the annihilation rate is too
large, may become a viable dark matter candidate for an appropriate value of TRH. This simple rescaling holds
whenever the particles χ are copiously produced in the modulus decay and if the pair annihilation rate is sufficiently
large; in the following, we refer this scenario as ’reannihilation regime’. If instead nχ(TRH) is lower than nc

χ(TRH),
the particles produced in the decay do not interact further and their number density per comoving volume is frozen,
being:

Yχ(TRH) =
nχ(TRH)

s(TRH)
$ BX

mX

ρX(TRH)

s(TRH)
$ 3

4

BX

mX
TRH (19)

and hence giving a non-thermal relic density which is about (see also, e.g., [24]):

ΩNT
χ h2 $ 0.2 · 104BX

10TeV

mX

TRH

1MeV

mχ

100GeV
(20)
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FIG. 2. Left panel: scaling of the relic density with the parameter BX for the same sample DM model selected for Fig 1 and
for a few values of TRH . Right panel: relic density versus TRH , having fixed BX = 10−5 and rescaling the value of 〈σv〉. The
black horizontal lines represent the cosmological DM density as extrapolated by the WMAP 7-year data [30].

by SM background particles and this is balanced by DM pair annihilations, and then at Tt.f.o., when neq
χ becomes

smaller than nc
χ and pair annihilations become inefficient, Yχ settles on a constant value. When TRH is reduced two

effects intervene: first of all, the thermal freeze out temperature tends to increase since the modulus contribution
to the Universe energy density increases H and hence nc

χ; at the same time, the dominant source of DM particles
becomes the modulus decays rather than SM pair creation. If χ number density from the decay exceeds nc

χ, this source
term is balanced by DM pair annihilations and nχ tracks the quasi-static equilibrium (QSE) density, as defined, e.g.,
in Ref [28]:

nQSE
χ ≡

(
BXΓXρX
mX〈σeffv〉

)1/2

. (21)

For our sample DM model, this is the behavior we find in all cases with large BX and TRH < Tt.f.o.: starting at
high T , Yχ follows first Y eq

χ , then it becomes equal to Y QSE
χ up to about TRH when the modulus DM source drops

exponentially, Y QSE
χ crosses Y c

χ and hence Yχ gets frozen. Regarding the temperature scalings in the plot, in the phase
when the modulus dominates the energy density and is the main entropy source, we see that both Y QSE

χ and Y c
χ are

proportional to T , except for a short low temperature phase in the examples for TRH = 30 and 6 MeV during which
the entropy injected but the modulus decay is still negligible compared to the initial entropy and hence a ∝ T−1,
making Y QSE

χ and Y c
χ rise as T−3/2. For small BX , Y QSE

χ becomes smaller than Y c
χ , DM annihilations are inefficient

and nχ simply scales as BXΓXρX/mX · t, up to the reheating temperature when the modulus source drops and Yχ

becomes constant; for what concerns the behavior in temperature, once again, in the phase in which the decay injects
DM particles, the scaling just given translates into Yχ ∝ T , while for very small BX one can also see a transient in
which the amount of DM produced in the decay is small compared to the thermal component and Yχ simply reflects
the entropy increase, decreasing faster than T .
In the example displayed, the specific set of initial conditions implemented to solve the system of equations has a

negligible impact on the final comoving density of DM particles. In fact the latter is insensitive to the choice of the
initial energy density in the moduli and the relative weight with respect to the initial radiation energy density provided
that the physical mechanism determining the DM relic density starts becoming efficient at temperatures lower than
the temperature at which the scaling T ∼ a−3/8 begins. More precisely: in all cases considered in this paper, the
DM pair annihilation rate is large enough to guarantee, even in the non-standard cosmological scenarios considered
here, chemical equilibrium at T ! mχ; the final relic densities is then determined by the physics taking place between
the thermal freeze-out temperature and the reheating temperature. If the T ∼ a−3/8 scaling starts sufficiently earlier
than TRH, the entropy production guarantees the suppression of the DM thermal component and, at the same time,
variations in the entropy release with the field energy density are compensated by a different efficiency in the non
thermal production, leaving then the final result unchanged. If, on the contrary, the DM thermal relic component
is not totally diluted, the T ∼ a−3/8 phase needs to start before the thermal freeze-out temperature, otherwise the
variation of dilution due to entropy release stemming from the initial conditions has a direct impact on the relic
density as well.
In Fig. 2 we plot the relic densities for the χ state. In the left panel we refer to the same model introduced for

freeze-out at
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A particle χ whose thermal relic density is small compared to the DM density because the annihilation rate is too
large, may become a viable dark matter candidate for an appropriate value of TRH. This simple rescaling holds
whenever the particles χ are copiously produced in the modulus decay and if the pair annihilation rate is sufficiently
large; in the following, we refer this scenario as ’reannihilation regime’. If instead nχ(TRH) is lower than nc

χ(TRH),
the particles produced in the decay do not interact further and their number density per comoving volume is frozen,
being:

Yχ(TRH) =
nχ(TRH)

s(TRH)
$ BX

mX

ρX(TRH)

s(TRH)
$ 3

4

BX

mX
TRH (19)

and hence giving a non-thermal relic density which is about (see also, e.g., [24]):

ΩNT
χ h2 $ 0.2 · 104BX

10TeV

mX

TRH

1MeV

mχ

100GeV
(20)

Efficient non thermal production favours candidates with high 
annihilation cross section.

Possible explanation to Pamela and 
Fermi anomalies.
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Non thermal production and the MSSM
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Non thermal production has impact 
on the expectations for mass and 
composition neutralino LSP.

Pure gaugino (Wino), or pure higgsino 
states compatible with cosmology.
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Specific framework: G2-MSSM
String M-theory

Effective sugra

Non universal gaugino masses

- Wino LSP with mass O(100-500) GeV.
- Almost degenerate chargino NLSP (mass splitting O(200) MeV).
- Pure Bino with mass O(1) LSP mass
- Gluino with mass O(0.5-1) TeV.
- Other superpartners with mass of the order of the gravitino mass.

Heavy moduli m=O(100) m3/2
Meson field m=O(1) m3/2
Light moduli m=O(1) m3/2

O(10-100) TeV gravitino mass

15

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 200  300  400  500  600  700

 150  200  250  300  350  400  450

!
"
h2

M3/2[TeV]

M"[GeV]

DXi
=4

DXi
=7

DXi
=10

DXi
=14

DXi
=16

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100  120  140  160  180  200  220  240  260  280  300

m
3/

2[
Te

V
]

m"[GeV]

#>-3

DXi
=4

DXi
=7

DXi
=10

DXi
=14

DXi
=16

FIG. 5. Left panel: Wino relic density versus the gravitino mass m3/2 for a few sample values of DXi and δ = −3; the upper
horizontal scale shows the corresponding value of for mχ for this specific value of δ. The band gives the 1− σ determination of
the DM relic density from the 7-year WMAP dataset. Right panel: models with relic density equal to the central value from
the WMAP data, in the plane mχ versus m3/2, obtained by varying δ in the range −10 < δ < −3 and few sample values of
DXi . The filled area marks the region violating the LEP lower limit on the chargino mass; the region of the plane above the
dashed line would correspond to models with δ > −3.

for χ) when Y3/2 is tipically 3 to 4 orders of magnitude smaller than the final Yχ, hence not contributing significantly
to the DM relic density.
In left panel of Fig. 5 we plot the neutralino relic density versus m3/2, for a few values of DXi

and a sample value
for δ, showing also on the upper horizontal scale the corresponding value of the Wino LSP mass for such given δ.
Given that the reannihilation regime applies, from Eq. (18) we expect Ωχ to be proportional to mχ and inversely

proportional to 〈σv〉 and TRH, with the latter in turn approximately proportional to D1/2
Xi

(m3/2)
3/2, see Eq. (3) where

the scaling in the modulus masses has been replaced by the scaling in terms of the gravitino mass. In the limit in
which the Wino pair annihilation cross section just scales with the inverse of the square of the Wino mass, one would
find:

Ωχh
2 ∝

[F (δ)]3
(
m3/2

)3/2

D1/2
Xi

(27)

where the function F (δ) parametrizes the quasi-linear relation between mχ and m3/2. In the plot, the result of the full
numerical solution roughly confirms these approximate scalings, except for small mχ for which 〈σv〉 is not inversely
proportional to m2

χ. To match the experimental value the DM abundance, lighter m3/2 and larger DXi
are favored.

In the right panel of Fig. 5 we consider the plane mχ versus m3/2 and, varying δ and for a few values of DXi
, we plot

models that have Ωχh2 equal to the mean value from the WMAP data; the plot illustrates the fact that, even in a
model as constrained as the G2-MSSM, there is still a rather large sensitivity to the parameters setting the theory
at high energy. A relic density compatible with cosmological measurements is obtained for LSP lighter than about
300 GeV and for reheating temperatures in the range between about 100 MeV and 1 GeV. The results of our analysis
are consistent, as an overall picture, with the results presented in Refs. [27, 55], although there are slight numerical
differences when comparing model by model; most likely these differences stem mainly from the determination of the
mass spectrum of the G2-MSSM which is probably less accurate in our work, although the more careful numerical
treatment implemented here for the relic density calculation may have some impact as well. As a final remark, we
mention that we have also crosschecked the result that, to obtain a relic density compatible with the DM density
as measured by WMAP, it is necessary to forbid the decay of the light moduli into gravitinos; in case it is not, in
all G2-MSSM setups, gravitino decays become the main dark matter source, at a stage when reannihilations are
inefficient, largely overproducing dark matter.

VI. KINETIC EQUILIBRIUM AND DECOUPLING IN THE G2-MSSM

In Section II we have emphasized that Eq. (7), tracing the evolution of the number density of the χa particles, has
been written assuming that kinetic equilibrium between the χa states and the thermal bath particles is maintained at

Our results are based on the assumptions done in B.  Acharya et al. arXiv:0801.0478
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are consistent, as an overall picture, with the results presented in Refs. [27, 55], although there are slight numerical
differences when comparing model by model; most likely these differences stem mainly from the determination of the
mass spectrum of the G2-MSSM which is probably less accurate in our work, although the more careful numerical
treatment implemented here for the relic density calculation may have some impact as well. As a final remark, we
mention that we have also crosschecked the result that, to obtain a relic density compatible with the DM density
as measured by WMAP, it is necessary to forbid the decay of the light moduli into gravitinos; in case it is not, in
all G2-MSSM setups, gravitino decays become the main dark matter source, at a stage when reannihilations are
inefficient, largely overproducing dark matter.

VI. KINETIC EQUILIBRIUM AND DECOUPLING IN THE G2-MSSM

In Section II we have emphasized that Eq. (7), tracing the evolution of the number density of the χa particles, has
been written assuming that kinetic equilibrium between the χa states and the thermal bath particles is maintained at

Correct relic density obtained for reheating temperatures between 100 MeV and 1 GeV.

Until now we have assumed that DM is kinetic equilibrium during production and after 
freeze-out (important for coannihilations).

Dark matter is produced out-of-equilibrium and then must have efficient interactions in 
order to get into thermal equilibrium.

Non thermal DM might not be in thermal equilibrium because it can be produced at 
temperatures close or below kinetic decoupling temperature.

Kinetic decoupling temperature can be altered in the non-standard cosmology.
Giorgio Arcadi                                                                                                                                                                    Planck 2011
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FIG. 6. Ratios between the effective rate of energy loss rate −1/E · dE/dt (dashed lines), or of the scattering/decay rate Γ
(solid lines), to the Universe expansion rate H , for a few processes involving charginos and neutralinos. The upper panels refer
to a G2-MSSM DM model with mχ = 103.5 GeV and TRH = 100 MeV, while the lower panels to one with mχ = 300 GeV and
TRH = 900 MeV; the plots on the left hand-side refer to non-relativistic particles, E/mχ = 1.005, while those on the right-hand
side correspond to a sample relativistic case, E/mχ = 10.

is parametrized defining the temperature of neutralinos Tχ0 through the second moment of the distribution function:

∫
d3p

(2π)3
gχ0 p2 fχ0(p, t) ≡ 3mχ Tχ0(t)nχ0(t) . (39)

For neutralinos in kinetic equilibrium, Tχ0 coincides with the thermal bath temperature; after kinetic decoupling the
neutralino temperature will scale instead as Tχ0 ∝ T 2.
The two distribution functions obey the system of coupled Boltzmann equations:

(∂t −Hp ·∇p) fχ0(p, t) =
1

E
Ĉχ0 [fχ0 , fχ± ] (40)

(∂t −Hp ·∇p) fχ±(p, t) =
1

E
Ĉχ± [fχ0 , fχ± ] ,

where Ĉ stands for the collisional operator, embedding all interactions involving neutralinos and charginos, namely
annihilation and scattering processes, as well as the production of neutralinos and chargino from moduli decays and
the neutralino source from chargino decays. Integrating these equation over phase space one obtains two equations
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TRH = 900 MeV; the plots on the left hand-side refer to non-relativistic particles, E/mχ = 1.005, while those on the right-hand
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is parametrized defining the temperature of neutralinos Tχ0 through the second moment of the distribution function:

∫
d3p

(2π)3
gχ0 p2 fχ0(p, t) ≡ 3mχ Tχ0(t)nχ0(t) . (39)

For neutralinos in kinetic equilibrium, Tχ0 coincides with the thermal bath temperature; after kinetic decoupling the
neutralino temperature will scale instead as Tχ0 ∝ T 2.
The two distribution functions obey the system of coupled Boltzmann equations:

(∂t −Hp ·∇p) fχ0(p, t) =
1

E
Ĉχ0 [fχ0 , fχ± ] (40)

(∂t −Hp ·∇p) fχ±(p, t) =
1

E
Ĉχ± [fχ0 , fχ± ] ,

where Ĉ stands for the collisional operator, embedding all interactions involving neutralinos and charginos, namely
annihilation and scattering processes, as well as the production of neutralinos and chargino from moduli decays and
the neutralino source from chargino decays. Integrating these equation over phase space one obtains two equations
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with Λ ∼ O(1). The elastic scattering of a Wino-like neutralino on a background lepton is very inefficient, since
it proceeds via a Z boson or a slepton exchange and the corresponding amplitudes are suppressed, respectively, by
the tiny higgsino fraction in the LSP and by the slepton masses, which in the G2-MSSM are very heavy. Whenever
kinematically allowed, the dominant effect is the inelastic scattering into the charged Wino, which is mediated by a
W boson. There are then two effects making a neutralino produced in the decay of the modulus lose energy, namely
the energy loss in the inelastic scattering itself and the fact that the produced chargino will efficiently lose energy. For
relativistic neutralinos, the inelastic scattering rate and the energy loss rate in inelastic scatterings are, respectively,
given by:

Γχ0→χ± =
∑

(a,b)

2g̃Wab G2
F

π3
exp

(
−mχ∆mχ

2ET

)
T 4 E

mχ

(
6
ET

mχ
+∆mχ

)
(34)

(
−dE

dt

)

χ0→χ±

=
∑

(a,b)

16g̃WabG2
F

π3
exp

(
−mχ∆mχ

2ET

)
T 5

(
E

mχ

)3 (
8
ET

mχ
+∆mχ

)
. (35)

where, considering the generic process in which the heat bath particle a is scattered into the particle b via an interaction
vertex with a W boson, we have included in the coefficient g̃Wab the product of the number of internal degrees for a,
that for b, as well as a rescaling factor in case the coupling constant in the vertex is different from the SU(2) gauge
coupling g (e.g., for the scattering process χ0 + e± → χ± + νe, g̃Wab = 8); the sum goes over any (a, b) thermal bath
particle pairs.
In Fig. 6 we consider two of the G2-MSSM singled out in the previous Section as models embedding a viable DM

candidate, at the light and heavy ends of the mass range displayed in Fig. 5, i.e. two models with Wino masses,
respectively, of 103.5 and 300 GeV, obtained for DXi

= 16, δ = −3.5 and δ = −3 and gravitino masses of 107 and
460 TeV, and corresponding to scenarios with approximate reheating temperatures of 100 MeV and 900 MeV. For such
models we plot ratios of scattering and decay rates Γ, or of relative energy loss rates −1/E · dE/dt, to the Universe
expansion rate H ; in the panels on the right-hand side, results are shown for relativistic particles, E/mχ = 10, while
on the left-hand side the non-relativistic limit is considered, E/mχ = 1.005. To sketch the efficiency of the chargino
energy losses, the appropriate timescale ∆τ in Eq. (29) is the shortest between the chargino lifetime and the timescale
for back-scattering of the chargino into the neutralino, i.e. the rule of thumb condition in Eq. (29) holds whenever
the curves in plots corresponding to the chargino energy loss lie above the curves for the decay rate and the inelastic
scattering rate. More quantitatively, for the two processes, these ratios are:

(
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E

)
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≈ 1.86 · 102Λ
(
1− m2

π

∆m2
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)−1/2 (
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)3 (100GeV

mχ

)
(36)
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≈ 6.77 · 10−2Λ

(
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T

)3 ( mχ

100GeV

)(
10

E/mχ

)3

, (37)

with the smallest of these being much larger than one in all cases except for relativistic charginos injected at tem-
peratures of the order of 1 GeV or larger. The latter is however the regime in which inelastic scatterings turning
a neutralino into a chargino and viceversa are extremely efficient (as shown in the plots the rate for this process is
many orders of magnitude larger than H) and the energy loss rate via this process is also very large (the relevant
timescale is now ∼ H−1). This shows that the relativistic charginos injected at any of the temperatures of interest
in our model instantaneously thermalize. For what regards neutralinos, in the relativistic limit, the energy deple-
tion is guaranteed by inelastic scatterings and by chargino energy losses down to background temperatures of about
2 MeV; however when becoming non-relativistic and at low temperatures, the rate for inelastic scatterings becomes
smaller than H and the assumption of kinetic equilibrium may not hold any more. To study the evolution of the
system at low temperature and model kinetic decoupling, we follow the approach of Bringmann and Hofmann [14]
(see also [64]) who have developed a formalism to treat kinetic decoupling starting from the Boltzmann equation for
the phase-space distribution function of the WIMP DM candidate; we extend here their treatment to the case of two
co-annihilating particles. Let fχ0(p, t) and fχ±(p, t) be the phase space distribution functions for, respectively, the
neutral and charged Winos. We have just shown that charginos are kept into kinetic equilibrium at all temperatures of
interest for your problem, so we can assume that the shape of the chargino distribution traces the thermal distribution
function, namely:

fχ±(p, t) ∝ feq
χ±(p, t) . (38)

On the other hand, the distribution function of the neutralinos could have a shape which is slightly different from the
thermal one, since we have shown that energy losses may not be efficient in the non-relativistic regime; this departure
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all stages over which the comoving number density changes. Whether this assumption is valid or not depends on the
efficiency of the scattering processes on thermal bath particles, an issue with is usually addressed invoking crossing
symmetry arguments relating the scattering to the annihilation cross section; in most explicit models however the
two processes are not related via crossing symmetry and one should actually study this problem case by case. We
focus here on the G2-MSSM (a more general framework with non-thermal Wino DM will be also considered at the
end) and discuss the steps which should be followed when relaxing the hypothesis of kinetic equilibrium, introducing
a more general set of Boltzmann equations.
The energy spectrum of SUSY particles produced in the decay of moduli is usually very different from the thermal

distribution; in particular in the G2-MSSM scenario, light particles are generated in the decay of very heavy fields.
The cascade process generally starts with the production a pair of squarks, followed by their decay into gluino and
quark, and with the gluino in turn decaying with a three body process into the LSP, the Wino-like chargino or the
Bino, with branching ratios depending on parameters in the model. As a last step, the Bino decays as well into the
chargino or the LSP, while the chargino, given the small mass splitting with respect to the LSP, has a longer lifetime.
The chargino decay occurs either through a two body process in which a pion is produced together with the LSP, or
through a three-body in which a neutrino and an electron are produced; the rates of these processes are given by,
respectively, [56, 57]:

Γχ± ,2b =
2f2

πG
2
F

π
∆m2

χ

√
∆m2

χ −m2
π and Γχ± ,3b =

2G2
F∆m5

χ

15π3
, (28)

where ∆mχ is the chargino-neutralino mass splitting, fπ = 93 MeV is the pion decay constant and GF is the Fermi
constant. The two-body decay is dominant when kinematically allowed; this is the case in the G2-MSSM, since the
minimum mass splitting between charged and neutral Wino, induced but electroweak radiative corrections to the two
masses is ∆mχ " 160 MeV [53] . We have studied the decay chain of the moduli with the package PYTHIA [58] for a
few sample benchmark models in the G2-MSSM, assuming a stable Wino-like chargino, and found energy distributions
for the Wino-like neutralinos and charginos which are typically peaked at E/mχ ∼ 10 and with very broad tails up
to the kinematical threshold; among decay products, the number of charginos is typically about 3 times larger than
the number of neutralinos.
The injected ultra-relativistic particles lose energy via scattering on thermal bath states. Were these processes

inefficient, the non-thermal DM generation would give rise to a model of the Universe with warm or even hot DM, a
possibility which has been investigated, e.g., in Refs. [59–61]. As a first rule of thumb, the energy depletion is efficient
whenever the relative energy loss rate times the time interval the over which the process is active, which we indicate
as ∆τ , is larger than 1:

(
− 1

E

dE

dt

)
·∆τ > 1 . (29)

In our case this condition needs to hold from the relativistic regime down to the non-relativistic low-temperature
environments induced by the reheating phase. The expression for −dE/dt is in the form:

−dE

dt
=

∫
dE′ (E − E′)

dΓ

dE′
(E,E′) (30)

where Γ(E) the scattering rate for the process under scrutiny, integrated over the phase space distribution functions
of the thermal bath particles in the initial state and the phase space of the out-scattered particles. The expressions
we will report below are derived in the limit of small momentum transfer between the non-thermally produced states
and the thermal bath particles; the latter on average have energies equal to about 3T . The small momentum transfer
approximation holds whenever the non-thermal particles are non-relativistic in the CM frame of the scattering process,
namely for [60]:

m2
χ ! 6TE . (31)

Assuming instantaneous production at reheating, this relation can be translated into:

TRH " 1.7GeV
( mχ

100GeV

)(
10

E/mχ

)
, (32)

a condition which is satisfied in the region of the G2-MSSM parameter space providing a viable DM candidate.
Charginos lose energy via electromagnetic interactions and their energy loss rate takes the form [62, 63]:

(
−dE

dt

)

χ±

=
πα2T 2

3
Λ (33)

Two-particle system:charginos and neutralinos.
Kinetic equilibrium established after production 
if: 

-Neutralinos: energy loss through inelastic 
scatterings into charginos. Elastic scatterings 
instead suppressed. 
-Charginos: efficient energy loss through 
electromagnetic interactions.
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efficiency of the scattering processes on thermal bath particles, an issue with is usually addressed invoking crossing
symmetry arguments relating the scattering to the annihilation cross section; in most explicit models however the
two processes are not related via crossing symmetry and one should actually study this problem case by case. We
focus here on the G2-MSSM (a more general framework with non-thermal Wino DM will be also considered at the
end) and discuss the steps which should be followed when relaxing the hypothesis of kinetic equilibrium, introducing
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for the Wino-like neutralinos and charginos which are typically peaked at E/mχ ∼ 10 and with very broad tails up
to the kinematical threshold; among decay products, the number of charginos is typically about 3 times larger than
the number of neutralinos.
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inefficient, the non-thermal DM generation would give rise to a model of the Universe with warm or even hot DM, a
possibility which has been investigated, e.g., in Refs. [59–61]. As a first rule of thumb, the energy depletion is efficient
whenever the relative energy loss rate times the time interval the over which the process is active, which we indicate
as ∆τ , is larger than 1:
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In our case this condition needs to hold from the relativistic regime down to the non-relativistic low-temperature
environments induced by the reheating phase. The expression for −dE/dt is in the form:
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=
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where Γ(E) the scattering rate for the process under scrutiny, integrated over the phase space distribution functions
of the thermal bath particles in the initial state and the phase space of the out-scattered particles. The expressions
we will report below are derived in the limit of small momentum transfer between the non-thermally produced states
and the thermal bath particles; the latter on average have energies equal to about 3T . The small momentum transfer
approximation holds whenever the non-thermal particles are non-relativistic in the CM frame of the scattering process,
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Assuming instantaneous production at reheating, this relation can be translated into:
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a condition which is satisfied in the region of the G2-MSSM parameter space providing a viable DM candidate.
Charginos lose energy via electromagnetic interactions and their energy loss rate takes the form [62, 63]:
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Boltzmann equations for the number densities

Dark matter istantaneously thermalized after production as soon neutralino inelastic 
scatterings are efficient. 
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FIG. 6. Ratios between the effective rate of energy loss rate −1/E · dE/dt (dashed lines), or of the scattering/decay rate Γ
(solid lines), to the Universe expansion rate H , for a few processes involving charginos and neutralinos. The upper panels refer
to a G2-MSSM DM model with mχ = 103.5 GeV and TRH = 100 MeV, while the lower panels to one with mχ = 300 GeV and
TRH = 900 MeV; the plots on the left hand-side refer to non-relativistic particles, E/mχ = 1.005, while those on the right-hand
side correspond to a sample relativistic case, E/mχ = 10.

is parametrized defining the temperature of neutralinos Tχ0 through the second moment of the distribution function:

∫
d3p

(2π)3
gχ0 p2 fχ0(p, t) ≡ 3mχ Tχ0(t)nχ0(t) . (39)

For neutralinos in kinetic equilibrium, Tχ0 coincides with the thermal bath temperature; after kinetic decoupling the
neutralino temperature will scale instead as Tχ0 ∝ T 2.
The two distribution functions obey the system of coupled Boltzmann equations:

(∂t −Hp ·∇p) fχ0(p, t) =
1
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Ĉχ0 [fχ0 , fχ± ] (40)

(∂t −Hp ·∇p) fχ±(p, t) =
1
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Ĉχ± [fχ0 , fχ± ] ,

where Ĉ stands for the collisional operator, embedding all interactions involving neutralinos and charginos, namely
annihilation and scattering processes, as well as the production of neutralinos and chargino from moduli decays and
the neutralino source from chargino decays. Integrating these equation over phase space one obtains two equations
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TRH = 900 MeV; the plots on the left hand-side refer to non-relativistic particles, E/mχ = 1.005, while those on the right-hand
side correspond to a sample relativistic case, E/mχ = 10.

is parametrized defining the temperature of neutralinos Tχ0 through the second moment of the distribution function:

∫
d3p

(2π)3
gχ0 p2 fχ0(p, t) ≡ 3mχ Tχ0(t)nχ0(t) . (39)

For neutralinos in kinetic equilibrium, Tχ0 coincides with the thermal bath temperature; after kinetic decoupling the
neutralino temperature will scale instead as Tχ0 ∝ T 2.
The two distribution functions obey the system of coupled Boltzmann equations:

(∂t −Hp ·∇p) fχ0(p, t) =
1

E
Ĉχ0 [fχ0 , fχ± ] (40)

(∂t −Hp ·∇p) fχ±(p, t) =
1

E
Ĉχ± [fχ0 , fχ± ] ,

where Ĉ stands for the collisional operator, embedding all interactions involving neutralinos and charginos, namely
annihilation and scattering processes, as well as the production of neutralinos and chargino from moduli decays and
the neutralino source from chargino decays. Integrating these equation over phase space one obtains two equations

In the non relativistic limit and at the leading order expansion in T/M and ΔM/M: 
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for the time evolution of the neutralino and chargino number densities:

dnχ0

dt
+ 3H nχ0 =

(
Γ̃χ0↔χ± + Γχ±

)[
gχ0nχ± − gχ±nχ0 exp

(
−∆mχ

T
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− 〈σv〉χ0χ0
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n2
χ0 − (neq

χ0)
2
]

(41)

−〈σv〉χ0χ±

[
nχ0nχ± − neq

χ0n
eq
χ±

]

dnχ±

dt
+ 3H nχ± =

(
Γ̃χ0↔χ± + Γχ±

)[
gχ±nχ0 exp

(
−∆mχ

T

)
− gχ0nχ±

]
− 〈σv〉χ±χ±

[
n2
χ± − (neq

χ±)
2
]

−〈σv〉χ±χ0

[
nχ±nχ0 − neq

χ±n
eq
χ0

]
+
∑

i

BXi

mXi

ΓXi
ρXi

.

In these equations, the first term on the right hand sides accounts for inelastic scatterings of neutralinos into charginos
and decays of charginos into neutralinos (as well as the inverse processes); gχ0 and gχ± are the number of internal
degrees of freedom for the neutralino and chargino, while Γχ± is the chargino decay rate as obtained including the
two contributions in Eq. (28). For inelastic scatterings we have assumed that: i) the diagram with W boson exchange
in the t-channel is the dominant one (since those with sfermion exchanged are highly suppressed); ii) the momentum
transfer in the t-channel is small and the collision term can be computed expanding in its powers, see also [14, 64];
iii) ∆mχ and T are small with respect to mχ and only the lowest order terms in an expansion in ∆mχ and T give
sizable contributions; under these assumptions, we find:

Γ̃χ0↔χ± =
∑

(a,b)

g̃Wab8G2
F

π3
T 3

(
∆m2

χ + 6∆mχT + 12T 2
)
, (42)

(some further details and a sketch of the derivation of this expression is given in Appendix (A)). When including pair
annihilation terms in Eq. (41) we have taken advantage of the fact that it involves non relativistic particles annihilating
mainly via S-wave processes and hence the cross section has a very mild dependence on momentum, allowing then us
to write an expression analogue to thermal case also when the neutralino distribution function starts deviating from
the kinetic equilibrium value. Furthermore, since the relativistic particles injected from the moduli decays mostly
lose energy as charginos, decaying afterwards into neutralinos, we have simplified the treatment including these as
a source function of ”thermal” charginos only. Obviously, summing the two equations one retrieves Eq. (7) with nχ

being the sum of the number density for the two coannihilating species.
Taking the second moment of the first equation in the system in Eq. (40), one finds that the neutralino temperature

Tχ0 obeys the relation:

dTχ0

dt
+ 2HTχ0 =

[(
Γ̃χ0↔χ± + Γχ±

)
gχ0

nχ±

nχ0

]
(T − Tχ0) (43)

(the derivation of this equation is also sketched in the appendix).
The numerical solution of the problem proceeds now analogously to what done so far. After the appropriate change

of variables, the system in Eq. (41) replaces Eq. (7) in the system of Eq. (14). The explicit solution for nχ0(t) and
nχ±(t) are then implemented in Eq. (43) to find Tχ0(t).
Our first application is to the G2-MSSM models singled out in the previous Section as cosmologically favored. As

we had guessed in the analysis we performed at the level of energy loss and scattering rates and shown graphically in
Fig. 6, the departure from kinetic equilibrium tends to be at a temperature sensibly lower than the nominal reheating
temperatures for these models (which are of the order of 100 MeV or larger). The numerical solution indeed shows
that the ratio nχ±/nχ0 tends to follow very closely the ratio of the thermal equilibrium number densities neq

χ±/n
eq
χ0 over

the whole phase of DM production in the moduli decays, as well as at later times. The solution of the equation for
the neutralino temperature shows that kinetic equilibrium is maintained up to a temperature of the order of 10 MeV,
independently of the neutralino mass since, in the non-relativistic limit, the inelastic scattering rate (which together
with chargino electromagnetic interactions enforces the equilibrium) depends only on the chargino-neutralino mass
splitting which is essentially the same over the whole range of selected models. The transition between Tχ0

= T to
the regime Tχ0 ∝ T 2 takes place on relatively short timescales; since at 10 MeV non-thermal production has become
irrelevant, we would have found the very same scaling when computing the kinetic decoupling for a population of
thermal particles: the evolution of the number density ratio and of Tχ0 for G2-MSSM DM models are those shown as
black lines in Fig. 7 and labelled, respectively, ’thermal distributions’ and ’standard decoupling’.
To illustrate the impact of non-thermal production and non-standard cosmologies on the kinetic decoupling process,

we allow then for a slight variant to the underlying particle physics framework, still referring to a pure Wino as DM
candidate but assuming now that the reheating temperature can be reduced to values much closer to the bound from
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In these equations, the first term on the right hand sides accounts for inelastic scatterings of neutralinos into charginos
and decays of charginos into neutralinos (as well as the inverse processes); gχ0 and gχ± are the number of internal
degrees of freedom for the neutralino and chargino, while Γχ± is the chargino decay rate as obtained including the
two contributions in Eq. (28). For inelastic scatterings we have assumed that: i) the diagram with W boson exchange
in the t-channel is the dominant one (since those with sfermion exchanged are highly suppressed); ii) the momentum
transfer in the t-channel is small and the collision term can be computed expanding in its powers, see also [14, 64];
iii) ∆mχ and T are small with respect to mχ and only the lowest order terms in an expansion in ∆mχ and T give
sizable contributions; under these assumptions, we find:
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(some further details and a sketch of the derivation of this expression is given in Appendix (A)). When including pair
annihilation terms in Eq. (41) we have taken advantage of the fact that it involves non relativistic particles annihilating
mainly via S-wave processes and hence the cross section has a very mild dependence on momentum, allowing then us
to write an expression analogue to thermal case also when the neutralino distribution function starts deviating from
the kinetic equilibrium value. Furthermore, since the relativistic particles injected from the moduli decays mostly
lose energy as charginos, decaying afterwards into neutralinos, we have simplified the treatment including these as
a source function of ”thermal” charginos only. Obviously, summing the two equations one retrieves Eq. (7) with nχ

being the sum of the number density for the two coannihilating species.
Taking the second moment of the first equation in the system in Eq. (40), one finds that the neutralino temperature
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(the derivation of this equation is also sketched in the appendix).
The numerical solution of the problem proceeds now analogously to what done so far. After the appropriate change

of variables, the system in Eq. (41) replaces Eq. (7) in the system of Eq. (14). The explicit solution for nχ0(t) and
nχ±(t) are then implemented in Eq. (43) to find Tχ0(t).
Our first application is to the G2-MSSM models singled out in the previous Section as cosmologically favored. As

we had guessed in the analysis we performed at the level of energy loss and scattering rates and shown graphically in
Fig. 6, the departure from kinetic equilibrium tends to be at a temperature sensibly lower than the nominal reheating
temperatures for these models (which are of the order of 100 MeV or larger). The numerical solution indeed shows
that the ratio nχ±/nχ0 tends to follow very closely the ratio of the thermal equilibrium number densities neq
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eq
χ0 over

the whole phase of DM production in the moduli decays, as well as at later times. The solution of the equation for
the neutralino temperature shows that kinetic equilibrium is maintained up to a temperature of the order of 10 MeV,
independently of the neutralino mass since, in the non-relativistic limit, the inelastic scattering rate (which together
with chargino electromagnetic interactions enforces the equilibrium) depends only on the chargino-neutralino mass
splitting which is essentially the same over the whole range of selected models. The transition between Tχ0

= T to
the regime Tχ0 ∝ T 2 takes place on relatively short timescales; since at 10 MeV non-thermal production has become
irrelevant, we would have found the very same scaling when computing the kinetic decoupling for a population of
thermal particles: the evolution of the number density ratio and of Tχ0 for G2-MSSM DM models are those shown as
black lines in Fig. 7 and labelled, respectively, ’thermal distributions’ and ’standard decoupling’.
To illustrate the impact of non-thermal production and non-standard cosmologies on the kinetic decoupling process,

we allow then for a slight variant to the underlying particle physics framework, still referring to a pure Wino as DM
candidate but assuming now that the reheating temperature can be reduced to values much closer to the bound from
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System of two coupled equations:
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thermal production
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From the second momentum of the distribution function:
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FIG. 6. Ratios between the effective rate of energy loss rate −1/E · dE/dt (dashed lines), or of the scattering/decay rate Γ
(solid lines), to the Universe expansion rate H , for a few processes involving charginos and neutralinos. The upper panels refer
to a G2-MSSM DM model with mχ = 103.5 GeV and TRH = 100 MeV, while the lower panels to one with mχ = 300 GeV and
TRH = 900 MeV; the plots on the left hand-side refer to non-relativistic particles, E/mχ = 1.005, while those on the right-hand
side correspond to a sample relativistic case, E/mχ = 10.

is parametrized defining the temperature of neutralinos Tχ0 through the second moment of the distribution function:

∫
d3p

(2π)3
gχ0 p2 fχ0(p, t) ≡ 3mχ Tχ0(t)nχ0(t) . (39)

For neutralinos in kinetic equilibrium, Tχ0 coincides with the thermal bath temperature; after kinetic decoupling the
neutralino temperature will scale instead as Tχ0 ∝ T 2.
The two distribution functions obey the system of coupled Boltzmann equations:

(∂t −Hp ·∇p) fχ0(p, t) =
1

E
Ĉχ0 [fχ0 , fχ± ] (40)

(∂t −Hp ·∇p) fχ±(p, t) =
1

E
Ĉχ± [fχ0 , fχ± ] ,

where Ĉ stands for the collisional operator, embedding all interactions involving neutralinos and charginos, namely
annihilation and scattering processes, as well as the production of neutralinos and chargino from moduli decays and
the neutralino source from chargino decays. Integrating these equation over phase space one obtains two equations

can be defined a temperature which parametrizes deviations from kinetic equilibrium. 
Charginos are always kept into equilibrium by electromagnetic interactions. Only one 
equation needed:
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for the time evolution of the neutralino and chargino number densities:
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In these equations, the first term on the right hand sides accounts for inelastic scatterings of neutralinos into charginos
and decays of charginos into neutralinos (as well as the inverse processes); gχ0 and gχ± are the number of internal
degrees of freedom for the neutralino and chargino, while Γχ± is the chargino decay rate as obtained including the
two contributions in Eq. (28). For inelastic scatterings we have assumed that: i) the diagram with W boson exchange
in the t-channel is the dominant one (since those with sfermion exchanged are highly suppressed); ii) the momentum
transfer in the t-channel is small and the collision term can be computed expanding in its powers, see also [14, 64];
iii) ∆mχ and T are small with respect to mχ and only the lowest order terms in an expansion in ∆mχ and T give
sizable contributions; under these assumptions, we find:

Γ̃χ0↔χ± =
∑

(a,b)

g̃Wab8G2
F

π3
T 3

(
∆m2

χ + 6∆mχT + 12T 2
)
, (42)

(some further details and a sketch of the derivation of this expression is given in Appendix (A)). When including pair
annihilation terms in Eq. (41) we have taken advantage of the fact that it involves non relativistic particles annihilating
mainly via S-wave processes and hence the cross section has a very mild dependence on momentum, allowing then us
to write an expression analogue to thermal case also when the neutralino distribution function starts deviating from
the kinetic equilibrium value. Furthermore, since the relativistic particles injected from the moduli decays mostly
lose energy as charginos, decaying afterwards into neutralinos, we have simplified the treatment including these as
a source function of ”thermal” charginos only. Obviously, summing the two equations one retrieves Eq. (7) with nχ

being the sum of the number density for the two coannihilating species.
Taking the second moment of the first equation in the system in Eq. (40), one finds that the neutralino temperature

Tχ0 obeys the relation:

dTχ0

dt
+ 2HTχ0 =

[(
Γ̃χ0↔χ± + Γχ±

)
gχ0

nχ±

nχ0

]
(T − Tχ0) (43)

(the derivation of this equation is also sketched in the appendix).
The numerical solution of the problem proceeds now analogously to what done so far. After the appropriate change

of variables, the system in Eq. (41) replaces Eq. (7) in the system of Eq. (14). The explicit solution for nχ0(t) and
nχ±(t) are then implemented in Eq. (43) to find Tχ0(t).
Our first application is to the G2-MSSM models singled out in the previous Section as cosmologically favored. As

we had guessed in the analysis we performed at the level of energy loss and scattering rates and shown graphically in
Fig. 6, the departure from kinetic equilibrium tends to be at a temperature sensibly lower than the nominal reheating
temperatures for these models (which are of the order of 100 MeV or larger). The numerical solution indeed shows
that the ratio nχ±/nχ0 tends to follow very closely the ratio of the thermal equilibrium number densities neq

χ±/n
eq
χ0 over

the whole phase of DM production in the moduli decays, as well as at later times. The solution of the equation for
the neutralino temperature shows that kinetic equilibrium is maintained up to a temperature of the order of 10 MeV,
independently of the neutralino mass since, in the non-relativistic limit, the inelastic scattering rate (which together
with chargino electromagnetic interactions enforces the equilibrium) depends only on the chargino-neutralino mass
splitting which is essentially the same over the whole range of selected models. The transition between Tχ0

= T to
the regime Tχ0 ∝ T 2 takes place on relatively short timescales; since at 10 MeV non-thermal production has become
irrelevant, we would have found the very same scaling when computing the kinetic decoupling for a population of
thermal particles: the evolution of the number density ratio and of Tχ0 for G2-MSSM DM models are those shown as
black lines in Fig. 7 and labelled, respectively, ’thermal distributions’ and ’standard decoupling’.
To illustrate the impact of non-thermal production and non-standard cosmologies on the kinetic decoupling process,

we allow then for a slight variant to the underlying particle physics framework, still referring to a pure Wino as DM
candidate but assuming now that the reheating temperature can be reduced to values much closer to the bound from

20

BBN than in the G2-MSSM. In Fig. 7 one sees a modification with respect to the standard case when the gap between
reheating temperature and standard kinetic decoupling temperature is reduced, i.e. for TRH equal to about 20 MeV or
lower: The additional DM source makes the ratio nχ±/nχ0 differ from the ratio of thermal distributions. The impact
on Tχ0

is two folded: the chargino decays tend to populate the system with neutralinos that are on average more
energetic than for a thermal distribution, delaying the onset of the regime Tχ0 ∝ T 2 and making the transition into
this regime to be less sharp; at the same time, if TRH is so low that reheating increases significantly the expansion
rate of the Universe H at the time of kinetic decoupling (TRH = 8 and 5 MeV in the plot) the departure from Tχ0

= T
tends to be anticipated. This latter feature was already pointed in [65], showing that the non-thermal production
could induce higher kinetic decoupling temperatures compared to the standard case; in case of Wino DM, however,
the production and decay or charginos in the moduli decay has always a larger impact. The kinetic decoupling
temperature is directly related to the minimum mass scale for structures in the Universe; we have shown here that
even in case of injection of particles with efficient energy losses on the thermal bath, the low-temperature non-thermal
production can leave an imprint on structure formation. The development of a precise numerical treatment of the
kinetic decoupling is then a valuable tool to test this class of models.
Finally, in the examples considered here, we find a marginal change in the DM relic density when computing it in

the case when we trace the the number densities of the individual coannihilating species as opposed to the case when a
single equation for the sum of number densities is solved; this is due to the fact that the departure of the ratio nχ±/nχ0

from the ratio of thermal distributions takes place only when such quantity is very small (moreover, in our examples,
the annihilation rates for each of the coannihilation channels are comparable). Considering however models for which
crossing symmetry arguments between annihilation and scattering cross sections are even more severely violated, one
should find cases in which the standard thermal assumption is invalid at higher temperatures, possibly even close to
the chemical freeze out temperature; in those cases there should be a sizable change in the relic abundance as well
and the formalism we developed would be suitable for an accurate computation of the relic density for such case.
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FIG. 7. Left panel: ratio of the chargino number density over the neutralino number density for several values of TRH . Right
panel: Ratio Tχ0/T as function of the temperature of the thermal bath for same values of TRH . Plots are obtained for a Wino
with mass equal to 200 GeV, however results depend only on the chargino-neutralino mass splitting which is about 160 MeV
in the scenario under consideration.

VII. CONCLUSIONS

Non-thermal dark matter production is a viable alternative to the standard paradigm of WIMPs as thermal relics.
It is a well-motivated scenario arising naturally in several particle physics frameworks, including SUSY standard model
extensions within supergravity and superstring theories. Moreover, an epoch of entropy injection at an intermediate
phase between the reheating at the end of inflation and the onset of BBN dilutes dangerous long-lived relics, such
as gravitinos. We have reviewed how to introduce a system of differential equations to treat a generic case of non-
thermal dark matter generation and implemented an efficient and accurate numerical scheme for the computation;
such scheme has been interfaced to DarkSUSY numerical package and will be released together with an upcoming
version of the code. The interest in this scenario has been recently boosted by the fact that, generically, it favors
dark matter candidates with pair annihilation cross sections larger than in the thermal WIMP framework, possibly
suggesting a connection with the very large annihilation rates which would be needed to explain with a dark matter
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extensions within supergravity and superstring theories. Moreover, an epoch of entropy injection at an intermediate
phase between the reheating at the end of inflation and the onset of BBN dilutes dangerous long-lived relics, such
as gravitinos. We have reviewed how to introduce a system of differential equations to treat a generic case of non-
thermal dark matter generation and implemented an efficient and accurate numerical scheme for the computation;
such scheme has been interfaced to DarkSUSY numerical package and will be released together with an upcoming
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dark matter candidates with pair annihilation cross sections larger than in the thermal WIMP framework, possibly
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interacting with other species and decay themselves (an eventual term associated to the production via inelastic
scattering off SM or χa particles is not introduced since such term becomes relevant only at large temperatures, while
we will only consider here the case of moderate to low TRH; also, we are not considering the possibility of a ψj particle
decaying into a lighter ψk state, since we will not encounter a case of this kind in explicit models and it would just
complicate the notation). The Boltzmann equation for the ψj number density is:

dnψj

dt
+ 3Hnψj

=
∑

i

Bψj ,Xi

mXi

ΓXi
ρXi

− Γψj
nψj

, (6)

where Bψj ,Xi
is the mean number of particles ψj generated in the decay of the field Xi, i.e. it is the product of the

branching ratio of decay into ψj times the mean multiplicity.
To trace the number density of the χa states, especially when two or more of these are nearly degenerate in mass

(coannihilating particles), one should refer to a system of coupled Boltzmann equations describing: the source from
the decay of the Xi and ψj fields; their changes in number density due to pair production from and annihilation
into SM particles; the energy exchanges with SM thermal bath particles through elastic scatterings processes; the
redistribution in the relative number density by inelastic scattering of a given χa into a different χb state; the decays
of χc into lighter χd particles and and of these to the lightest stable species. This is usually not done since it is a
system of coupled stiff equations one needs to solve numerically; moreover it is usually not necessary to do it, since
one is interested only in the number density of the lightest state after all heavy states have decayed into the stable
one. Rather than tracing the number density nχa

of the individual state χa, one usually solves a single equation
written for the sum of all the number densities, nχ =

∑
a nχa

, i.e. [22, 23]:

dnχ

dt
+ 3H nχ = −〈σeffv〉

[
n2
χ − (neq

χ )2
]
+
∑

i

BXi

mXi

ΓXi
ρXi

+
∑

j

Bψj
Γψj

nψj
(7)

where BXi
≡

∑
a Bχa,Xi

and Bψj
≡

∑
a Bχa,ψj

have been defined in analogy to Bψj ,Xi
. In this equation neq

χ stands
for the sum of thermal equilibrium number densities, and the term proportional its square accounts for the production
of particles χa in pair annihilations of SM thermal bath particles, while the effective thermally averaged annihilation
cross section:

〈σeffv〉 =
∑

a,b

〈σabvab〉
neq
χa

neq
χ

neq
χb

neq
χ

(8)

is written as a weighted sum over the thermally averaged annihilation cross section of any χa-χb pair into SM particles;
the processes giving a sizable contribution to this sum are only those for which the mass splitting between a state χa

and the lightest state χ0 are comparable to the thermal bath temperature T . There are two main assumptions which
allow to implement Eq. (7) to trace nχ. The first is kinetic equilibrium for each species χa, namely that the scattering
processes on thermal bath particles are efficient and make the phase space densities for each particle trace the spectral
shape of the corresponding thermal equilibrium phase space density, namely fa(ka, t) = C(t) · feq

a (ka, t) (with the
coefficient C depending on time but not on momentum). Within this assumption, we treat as instantaneous the energy
depletion from the relativistic regime when particles are injected from moduli or ψj decays to the non-relativistic
velocities in the low reheating temperature background plasma; it also allows to factorize the number density out
of each thermally averaged annihilation cross section (which is defined in terms of thermal equilibrium phase space
densities). To implement the factorization of the individual terms in the sum of Eq. (8) one needs also to assume
that nχa

/nχ % neq
χa
/neq

χ , a quantity which, in the Maxwell-Boltzmann approximation for the equilibrium phase space
densities, as appropriate for non-relativistic particles, is proportional to the number of internal degrees of freedom
gχa

and is exponentially suppressed with the ratio between mass splitting and temperature; this approximation is
strictly valid only in case inelastic scatterings of χa particles are efficient over the whole time interval in which the
pair annihilation term is relevant. Within the standard computation of the thermal relic density for WIMPs, the two
assumption are in general well justified, since the kinetic decoupling and the decoupling of inelastic scatterings usually
take place at a much lower temperature than chemical decoupling; while assuming that Eq. (7) is valid in the next
Sections, in Section 6 we study this issue in more details and, considering a specific particle physics scenario, address
the problem of kinetic decoupling in models with non-thermal generation of DM particles.
We keep track of the SM states only through their contribution to the radiation energy density and pressure which,

using Eq. (5) and subtracting the contribution from ψj and χa fields, obey the equation:

dρR
dt

+ 3H(ρR + pR) %
∑

i

(
1−

∑
j Bψj ,Xi

〈Eψj ,Xi
〉+BXi

mχ

mXi

)
ΓXi

ρXi
+
∑

j

(
〈Eψj

〉 −mχBψj

)
Γψj

nψj

+mχ〈σeffv〉
[
n2
χ − (neq

χ )2
]
. (9)
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moduli in the scalar potential. Further candidates for long-lived states arise in supergravity theories. The gravitino
is not in thermal equilibrium in the early Universe, however, plays a different role compared to moduli fields; we will
restrict to the case when gravitinos are heavy and not the LSP (otherwise the phenomenology would be very different
from the one discussed in this paper), falling in the category of the ψi fields introduced above. Another possibility is
the Polonyi field [15–17] which is introduced in many SUSY breaking schemes. Finally supergravity can be seen as a
low energy limit of string theory, in which scalar fields can appear in the compactification of extra dimensions.
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simplicity the cases of a single modulus X which decays when it dominates the Universe energy density; focussing on
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ΓX = DX
m3

X

M2
Pl

, (1)

with DX some coefficient depending on the specific model, mX the field mass and MPl the reduced Planck mass.
Assuming instantaneous conversion of the energy density into radiation, one usually defines the reheating temperature
TRH through the expression:

ΓX ≡
√

π2geff(TRH)

90

T 2
RH

MPl
, (2)

where geff(TRH) is the effective number of relativistic degrees of freedom at TRH. Inverting this expression, one finds
approximately that the onset of the standard radiation dominated phase happens at the temperature:

TRH

1MeV
" 0.62D1/2

X

[
10.75

geff(TRH)

]1/4 ( mX

10TeV

)3/2
. (3)

To avoid spoiling predictions of the standard BBN, one needs to require TRH
>∼ 4 MeV [18], which, for DX of order

one, translates into a lower limit on the mass of the cosmological modulus of about 30 TeV.
At this level of approximation the evolution of the system would be fully specified by the X decay width (or TRH)

and the amount of energy density converted into dark matter particles (which, in the treatment above, was implicitly
assumed to be tiny compared to amount going into radiation). Having instead in mind to be able to treat a system
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, (4)

and in case of several moduli present at the same time, the single equations are included in the system at the time
t = 3/2H = mXi

, assuming the energy density stored in the field at this time is equal to (1/2)m2
Xi

M2
Pl[19–21]; we

will comment later on the fact that the final density of dark matter is not sensitive to these assumptions.
The decay of the Xi particles produces SM particles, χa states cascading to the DM particle, and, eventually,

the long-lived ψi fields, in turn decaying into radiation and, possibly, DM particles. From the first principle of
thermodynamics, one can write an equation for the total energy density and pressure associated to SM, χa and ψj

states, respectively, ρ and p, in an implicit form:

dρ

dt
+ 3H(ρ+ p) =

∑

i

ΓXi
ρXi

. (5)

This equation is treatable once separating ρ and p in components. Starting with the ψj particles, one can safely assume
that they are produced in given number at decays, get diluted and redshifted by the Universe expansion without
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interacting with other species and decay themselves (an eventual term associated to the production via inelastic
scattering off SM or χa particles is not introduced since such term becomes relevant only at large temperatures, while
we will only consider here the case of moderate to low TRH; also, we are not considering the possibility of a ψj particle
decaying into a lighter ψk state, since we will not encounter a case of this kind in explicit models and it would just
complicate the notation). The Boltzmann equation for the ψj number density is:
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where Bψj ,Xi
is the mean number of particles ψj generated in the decay of the field Xi, i.e. it is the product of the

branching ratio of decay into ψj times the mean multiplicity.
To trace the number density of the χa states, especially when two or more of these are nearly degenerate in mass

(coannihilating particles), one should refer to a system of coupled Boltzmann equations describing: the source from
the decay of the Xi and ψj fields; their changes in number density due to pair production from and annihilation
into SM particles; the energy exchanges with SM thermal bath particles through elastic scatterings processes; the
redistribution in the relative number density by inelastic scattering of a given χa into a different χb state; the decays
of χc into lighter χd particles and and of these to the lightest stable species. This is usually not done since it is a
system of coupled stiff equations one needs to solve numerically; moreover it is usually not necessary to do it, since
one is interested only in the number density of the lightest state after all heavy states have decayed into the stable
one. Rather than tracing the number density nχa

of the individual state χa, one usually solves a single equation
written for the sum of all the number densities, nχ =

∑
a nχa

, i.e. [22, 23]:
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where BXi
≡
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and Bψj
≡

∑
a Bχa,ψj

have been defined in analogy to Bψj ,Xi
. In this equation neq

χ stands
for the sum of thermal equilibrium number densities, and the term proportional its square accounts for the production
of particles χa in pair annihilations of SM thermal bath particles, while the effective thermally averaged annihilation
cross section:

〈σeffv〉 =
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neq
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(8)

is written as a weighted sum over the thermally averaged annihilation cross section of any χa-χb pair into SM particles;
the processes giving a sizable contribution to this sum are only those for which the mass splitting between a state χa

and the lightest state χ0 are comparable to the thermal bath temperature T . There are two main assumptions which
allow to implement Eq. (7) to trace nχ. The first is kinetic equilibrium for each species χa, namely that the scattering
processes on thermal bath particles are efficient and make the phase space densities for each particle trace the spectral
shape of the corresponding thermal equilibrium phase space density, namely fa(ka, t) = C(t) · feq

a (ka, t) (with the
coefficient C depending on time but not on momentum). Within this assumption, we treat as instantaneous the energy
depletion from the relativistic regime when particles are injected from moduli or ψj decays to the non-relativistic
velocities in the low reheating temperature background plasma; it also allows to factorize the number density out
of each thermally averaged annihilation cross section (which is defined in terms of thermal equilibrium phase space
densities). To implement the factorization of the individual terms in the sum of Eq. (8) one needs also to assume
that nχa

/nχ % neq
χa
/neq

χ , a quantity which, in the Maxwell-Boltzmann approximation for the equilibrium phase space
densities, as appropriate for non-relativistic particles, is proportional to the number of internal degrees of freedom
gχa

and is exponentially suppressed with the ratio between mass splitting and temperature; this approximation is
strictly valid only in case inelastic scatterings of χa particles are efficient over the whole time interval in which the
pair annihilation term is relevant. Within the standard computation of the thermal relic density for WIMPs, the two
assumption are in general well justified, since the kinetic decoupling and the decoupling of inelastic scatterings usually
take place at a much lower temperature than chemical decoupling; while assuming that Eq. (7) is valid in the next
Sections, in Section 6 we study this issue in more details and, considering a specific particle physics scenario, address
the problem of kinetic decoupling in models with non-thermal generation of DM particles.
We keep track of the SM states only through their contribution to the radiation energy density and pressure which,

using Eq. (5) and subtracting the contribution from ψj and χa fields, obey the equation:
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allow to implement Eq. (7) to trace nχ. The first is kinetic equilibrium for each species χa, namely that the scattering
processes on thermal bath particles are efficient and make the phase space densities for each particle trace the spectral
shape of the corresponding thermal equilibrium phase space density, namely fa(ka, t) = C(t) · feq
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coefficient C depending on time but not on momentum). Within this assumption, we treat as instantaneous the energy
depletion from the relativistic regime when particles are injected from moduli or ψj decays to the non-relativistic
velocities in the low reheating temperature background plasma; it also allows to factorize the number density out
of each thermally averaged annihilation cross section (which is defined in terms of thermal equilibrium phase space
densities). To implement the factorization of the individual terms in the sum of Eq. (8) one needs also to assume
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χ , a quantity which, in the Maxwell-Boltzmann approximation for the equilibrium phase space
densities, as appropriate for non-relativistic particles, is proportional to the number of internal degrees of freedom
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and is exponentially suppressed with the ratio between mass splitting and temperature; this approximation is
strictly valid only in case inelastic scatterings of χa particles are efficient over the whole time interval in which the
pair annihilation term is relevant. Within the standard computation of the thermal relic density for WIMPs, the two
assumption are in general well justified, since the kinetic decoupling and the decoupling of inelastic scatterings usually
take place at a much lower temperature than chemical decoupling; while assuming that Eq. (7) is valid in the next
Sections, in Section 6 we study this issue in more details and, considering a specific particle physics scenario, address
the problem of kinetic decoupling in models with non-thermal generation of DM particles.
We keep track of the SM states only through their contribution to the radiation energy density and pressure which,

using Eq. (5) and subtracting the contribution from ψj and χa fields, obey the equation:
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+
∑
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Boltzmann equations for non-thermal DM
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6

In this equation 〈Eψj ,Xi
〉 is the mean energy of the particle ψj at injection from the decay of the modulus Xi:

〈Eψj ,Xi
〉 ≡

∫
dE′ dNψj ,Xi

dE′
E′ (10)

with dNψj ,Xi
/dE′ the energy spectrum from the decay normalized to 1; 〈Eψj

〉 is instead the mean energy for ψj

particles:

〈Eψj
〉(t)nψj

(t) ≡
∫ t

0
dt′

∑

i

Bψj ,Xi

mXi

ΓXi
ρXi

(t′)

∫
dE′ dNψj ,Xi

dE′

[
m2

ψj
+

a2(t′)

a2(t)
(E′2 −m2

ψj
)

]1/2
· (11)

·a
3(t′)

a3(t)
exp

[
−Γψj

(t− t′)
]
.

Finally, in Eq. (9) we have assumed that the mean energy of the χa states is equal to the mass mχ of the lightest
state χ0, neglecting, at this level, thermal corrections and mass splittings between the coannihilating states, as well
as the pressure term associated to χa.
Eqs. (4), (6), (7) and (9) define a system of coupled equations, closed by Friedmann equation giving H . In its

numerical solution, it is more convenient to use as independent variable, rather than the time t, the rescaled scale
factor A ≡ a/aI , with aI an arbitrary parameter with dimension of the inverse of an energy. Following [21], we will
use as dependent variables the dimensionless quantities:

ξXi
≡ ρXi

a3

Λ
, Nψj

≡ nψj
a3 and Nχ ≡ nχa

3 , (12)

with Λ an arbitrary energy scale, plus the temperature T , expressing ρR and pR in terms of the entropy density
through the standard definitions:

s(T ) =
ρR(T ) + pR(T )

T
≡ 2π2

45
heff(T )T

3 and ρR(T ) ≡
π2

30
geff(T )T

4 =
3

4

geff(T )

heff(T )
Ts(T ) , (13)

with geff and heff the effective number of relativistic degrees of freedom. The values of aI and Λ are chosen in order
to guarantee the best numerical stability to the solution, a sample guess being, respectively, T−1

RH and TRH, with the
approximate reheating scale as given through Eq. (2). After this change of variables the system becomes:

dξXi

dA
= −A1/2a3/2I

H ΓXi
ξXi

(14)

dNψj

dA
=

A1/2a3/2I

H

(

Λ
∑

i

Bψj ,Xi

mXi

ΓXi
ξXi

− Γψj
Nψj

)

dNχ

dA
= − 〈σeffv〉

A5/2a3/2I H

[
N2

χ − (Neq
χ )2

]
+

A1/2a3/2I

H



Λ
∑

i

BXi

mXi

ΓXi
ξXi

+
∑

j

Bψj
Γψj

Nψj





dT

dA
=

(
1 +

T

4geff

dgeff
dT

)−1
{

−heff

geff

T

A
+

heff

3geffs(T )

1

A5/2a3/2I H




∑

j

(
〈Eψj

〉 −mχBψj

)
Γψj

Nψj

+Λ
∑

i

(
1−

∑
j Bψj ,Xi

〈Eψj ,Xi
〉+BXi

mχ

mXi

)
ΓXi

ξXi
+

mχ〈σeffv〉
A3a3I

[
N2

χ − (Neq
χ )2

]
]}

where H is defined from the Universe expansion rate, as:

H ≡ (aIA)
3/2H =

(
Λ
∑

i ξXi
+ ρR(T )A3a3I +mχNχ +

∑
j〈Eψj

〉Nψj

3M2
PL

)1/2

. (15)

The relic density of dark matter can be evaluated by evolving these equations from an initial time, which we assume
to be the time when the heaviest modulus starts its coherent oscillations, up to the stage when the DM comoving
number density becomes constant.

6

In this equation 〈Eψj ,Xi
〉 is the mean energy of the particle ψj at injection from the decay of the modulus Xi:

〈Eψj ,Xi
〉 ≡

∫
dE′ dNψj ,Xi

dE′
E′ (10)

with dNψj ,Xi
/dE′ the energy spectrum from the decay normalized to 1; 〈Eψj

〉 is instead the mean energy for ψj

particles:

〈Eψj
〉(t)nψj

(t) ≡
∫ t

0
dt′

∑

i

Bψj ,Xi

mXi

ΓXi
ρXi

(t′)

∫
dE′ dNψj ,Xi

dE′

[
m2

ψj
+

a2(t′)

a2(t)
(E′2 −m2

ψj
)

]1/2
· (11)

·a
3(t′)

a3(t)
exp

[
−Γψj

(t− t′)
]
.

Finally, in Eq. (9) we have assumed that the mean energy of the χa states is equal to the mass mχ of the lightest
state χ0, neglecting, at this level, thermal corrections and mass splittings between the coannihilating states, as well
as the pressure term associated to χa.
Eqs. (4), (6), (7) and (9) define a system of coupled equations, closed by Friedmann equation giving H . In its

numerical solution, it is more convenient to use as independent variable, rather than the time t, the rescaled scale
factor A ≡ a/aI , with aI an arbitrary parameter with dimension of the inverse of an energy. Following [21], we will
use as dependent variables the dimensionless quantities:

ξXi
≡ ρXi

a3

Λ
, Nψj

≡ nψj
a3 and Nχ ≡ nχa

3 , (12)

with Λ an arbitrary energy scale, plus the temperature T , expressing ρR and pR in terms of the entropy density
through the standard definitions:

s(T ) =
ρR(T ) + pR(T )

T
≡ 2π2

45
heff(T )T

3 and ρR(T ) ≡
π2

30
geff(T )T

4 =
3

4

geff(T )

heff(T )
Ts(T ) , (13)

with geff and heff the effective number of relativistic degrees of freedom. The values of aI and Λ are chosen in order
to guarantee the best numerical stability to the solution, a sample guess being, respectively, T−1

RH and TRH, with the
approximate reheating scale as given through Eq. (2). After this change of variables the system becomes:

dξXi

dA
= −A1/2a3/2I

H ΓXi
ξXi

(14)

dNψj

dA
=

A1/2a3/2I

H

(

Λ
∑

i

Bψj ,Xi

mXi

ΓXi
ξXi

− Γψj
Nψj

)

dNχ

dA
= − 〈σeffv〉

A5/2a3/2I H

[
N2

χ − (Neq
χ )2

]
+

A1/2a3/2I

H



Λ
∑

i

BXi

mXi

ΓXi
ξXi

+
∑

j

Bψj
Γψj

Nψj





dT

dA
=

(
1 +

T

4geff

dgeff
dT

)−1
{

−heff

geff

T

A
+

heff

3geffs(T )

1

A5/2a3/2I H




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where H is defined from the Universe expansion rate, as:

H ≡ (aIA)
3/2H =
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Λ
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i ξXi
+ ρR(T )A3a3I +mχNχ +

∑
j〈Eψj

〉Nψj

3M2
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The relic density of dark matter can be evaluated by evolving these equations from an initial time, which we assume
to be the time when the heaviest modulus starts its coherent oscillations, up to the stage when the DM comoving
number density becomes constant.

6

In this equation 〈Eψj ,Xi
〉 is the mean energy of the particle ψj at injection from the decay of the modulus Xi:
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〉 ≡

∫
dE′ dNψj ,Xi

dE′
E′ (10)
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ΓXi
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dE′ dNψj ,Xi

dE′
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+
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ψj
)

]1/2
· (11)
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a3(t)
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[
−Γψj

(t− t′)
]
.

Finally, in Eq. (9) we have assumed that the mean energy of the χa states is equal to the mass mχ of the lightest
state χ0, neglecting, at this level, thermal corrections and mass splittings between the coannihilating states, as well
as the pressure term associated to χa.
Eqs. (4), (6), (7) and (9) define a system of coupled equations, closed by Friedmann equation giving H . In its

numerical solution, it is more convenient to use as independent variable, rather than the time t, the rescaled scale
factor A ≡ a/aI , with aI an arbitrary parameter with dimension of the inverse of an energy. Following [21], we will
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3 , (12)
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4 =
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4
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Ts(T ) , (13)
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The relic density of dark matter can be evaluated by evolving these equations from an initial time, which we assume
to be the time when the heaviest modulus starts its coherent oscillations, up to the stage when the DM comoving
number density becomes constant.

Change of variables:
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moduli
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Thanks to its efficients interactions dark matter loses essentially all its kinetic 
energy. The collisional operators can be taken in the non relativistic limit and 
expanded in powers of ΔM/M and T/M.
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with:

exp
(
−ω

T

)
" exp

(
∆mχ

T

)(
1− ∆mχv2

2T
− q · v

T
+

q2

2mχT
+

(q · v)(q · v)
2T 2

)
(A5)

we need to compute:

Ĉχ0,is[fχ0 ]

E
=

∑

(a,b)

g̃Wabgχ±

256π5EE′

∫
d3k

k
f(k)

∫
d3k′

k′
|M̄ |2ab δ (E′ + k′ − E − k)

[(
fχ±(p)e

∆mχ
T − fχ0(p)

)
−
(
∆mχv2

2T
fχ±(p) +

q · v
v

dfχ±

dp
+

q · v
T

fχ±(p)

)
e

∆mχ
T

+

(
q2

2mχT
fχ±(p) +

(q · v)(q · v)
2T 2

fχ±(p) +
(q · v)(q · v)

vT

dfχ±

dp
+

(q · v)(q · v)
2v2

∆pfχ±

)
e

∆mχ
T

+
1

2

(
q2

v
− 3(q · v)(q · v)

v3

)
dfχ±

dp
e

∆mχ
T

]
(A6)

which is the analogous to the expression for the expansion of the collisional operator obtained in [14]. As an example
we sketch the calculus of the first term in the square bracket. The invariant amplitude takes the form:

|M̄ |2ab = 64G2
F ((PK)(P ′K ′) + (PK ′)(P ′K)− (mχ +∆mχ)mχKK ′) (A7)

At the leading order in T/mχ and ∆mχ/mχ we can write:
∫

d3k

k
f(k)

∫
d3k′

k′
|M̄ |2ab δ (E′ + k′ − E − k) =

∫
d3k

k
f(k)

∫
d3k′

k′
δ(ω +

√
1− v2∆mχ − v · q) ·

·
[(

2(k − v · k)(k′ − v · k′) +
1

2
(ω2 − q2)(1− v2)

)
+
√
1− v2

(
−k′

k · q
mχ

− k
k′ · q
mχ

+ 2v · kv · k′v · q
mχ

+

−kv · k′∆mχ

mχ
− k′v · k∆mχ

mχ

)
+

1

2

(
ω2 − q2

)(
−v2

∆mχ

mχ
+ (1− 3

2
v2)

(v · q)
mχ

)]
(A8)

The first step of the integration is an average over the directions of v. It can be done by use of the following results:
∫

dΩ

4π
δ(W − v · q) = 1

2vq
θ(v2q2 −W 2) (A9)

∫
dΩ

4π
δ(W − v · q)vi = 1

2vq
θ(v2q2 −W 2)

W

q2
qi

∫
dΩ

4π
δ(W − v · q)vivj = 1

2vq
θ(v2q2 −W 2)

(
W 2 − v2q2

2q2
δij +

3W 2 − v2q2

2q4
qiqj

)

∫
dΩ

4π
δ(W − v · q)vivjvk =

1

2vq
θ(v2q2 −W 2)

(
v2q2W −W 3

2q4
(
qiδjk + qjδik + qkδij

)
+

5W 3 − 3v2q2W

2q6
qiqjqk

)

where we defined W ≡ ω +
√
1− v2∆mχ. The further 3 integrals in Eq. (A8) are most easily performed in in the

variables ω, q and k. Actually the last step, the integral in the variable k needs to be performed numerically; an
analitic expression, which traces rather accurately the numerical result, can be obtained by replacing the Fermi-
Dirac distribution f(k) with the exponential scaling exp (−k/T ). At the first order in T/mχ and ∆mχ/mχ, also
remembering that, under our assumptions, p2/m2

χ " T/mχ this gives:

∫
d3k

k
f(k)

∫
d3k′

k′
|M̄ |2ab δ (E′ + k′ − E − k) =

[
4T 3

(
∆m2

χ + 6∆mχT + 12T 2
)(

1 +
∆mχ

mχ

)
+

−2∆m2
χT

2 (∆mχ + 2T )
p

mχ
+

2

3
T
(
∆m4

χ + 3∆m3
χT + 32∆m2

χT
2 + 114∆mχT

3 + 144T 4
) p2

m2
χ

]
e

∆mχ
T . (A10)
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induced component recently detected anomalies in cosmic-ray lepton fluxes, such as the rise in the positron fraction
measured by the PAMELA detector; we have considered, within a toy model, what range of reheating temperatures
would follow from such identification. Focussing on SUSY models, we have discussed the impact of this non-standard
cosmology in selecting the preferred mass scale for the lightest SUSY particle as dark matter candidate, an issue with
a direct impact, e.g., on the interpretation of new physics eventually discovered at accelerators including the LHC.
In the second part of the paper we have concentrated on a more predictive model, the G2-MSSM, and questioned in
further details the underlying assumptions in the standard solution of the Boltzmann equation for the dark matter
component; in particular, we discussed how to verify whether kinetic equilibrium holds along the whole phase of dark
matter generation, as well as the validity of the factorization usually implemented to rewrite a system of coupled
Boltzmann equation for each number density of a set coannihilating particles as a single equation for the sum of all
the number densities. As a byproduct we developed here a formalism to compute the kinetic decoupling temperature
for a system of coannihilating species, which can be applied also to other particle physics frameworks, also in case
standard thermal relics within a standard cosmology.
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Appendix A: Evaluation of the collisional operators

In this appendix we will sketch how to compute the operators Ĉ as introduced in the system of coupled Boltzmann
equations (40). As a sample term we discuss how to deal with the contribution to the neutralino collisional operator
coming from inelastic processes of the type:

χ0(P ) + a(K) ↔ χ± (P ′) + b(K ′) (A1)

where a and b are thermal background particles, with four-momenta, respectively, K ≡ (k,k) and K ′ ≡ (k′,k′),
while P ≡ (E,p) and P ′ ≡ (E′,p′) denote the four-momenta of neutralino and chargino. Summing over all avalaible
thermal bath pairs (a, b), such contribution to the collisional operator, normalized to the neutralino energy E, takes
the form:

Ĉχ0,is

E
[fχ0 , fχ± ] =

∑

(a,b)

g̃Wabgχ±

∫
d3k

(2π)32k

∫
d3k′

(2π)32k′

∫
d3p′

(2π)32E′

|M̄ |2ab
2E

(2π)4δ4(P ′ +K ′ − P −K) ·

·
[
fb(k

′)(1 − fa(k))fχ±
(p′)− fa(k)(1− fb(k

′))fχ0(p)
]
; (A2)

where |M̄ |2ab is the modulus squared of the scattering amplitude, averaged over the initial spin states and summed over
the final spin states. In the following we assume that a and b are massless and described by Fermi-Dirac distribution
functions fa(k, t) and fb(k′, t) (to shorten the notation the indices a and b will be dropped). The exchanged four-
momentum is indicated as (ω,q) ≡ (E − E′,p− p′); for kinematical reason, the transferred momentum is constrained
to be of the order of the heat bath temperature and is small compared to the initial energy and mass of the neutralino.
The ratio between the mass splitting chargino-neutralino and the neutralino mass will be also assumed as a small
parameter. Furthermore we have initial conditions such that neutralinos have nearly thermal distributions, implying
v ∼

√
T/mχ % 1, being the neutralino velocity defined as v ≡ p/E. Under such conditions, we can just take the

non-relativistic limit of the collision term and, in addition, expand it respect to the quantities T/mχ and ∆mχ/mχ.
Using these informations we can eliminate the dipendece on p′ by Taylor expanding fχ±(p′) as:

fχ±(p′) & fχ±(p)− q ·∇pfχ±(p) +
1

2
(q ·∇p)

2fχ±(p) + ... (A3)

This allows us to freely integrate over the three-momentum component of the delta function in Eq. (A2). Using now
the relation:

f(k′)(1 − f(k)) = exp
(
−ω

T

)
f(k)(1− f(k′)) & exp

(
−ω

T

)
f(k) (A4)

The collisional operator for the inelastic scatterings is:
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After computing all integrals, the inelastic scattering contributions to the neutralino and chargino collision terms are
then found to be:

Ĉχ0,is

[
fχ0 , fχ±

]

E
=

∑ 2G2
Fg̃Wabgχ±

π3

{[
4T 3

(
∆m2

χ + 6∆mχT + 12T 2
)(

1 +
∆mχ

mχ

)

−2∆m2
χT

2 (∆mχ + 2T )
p

mχ
+

2

3
T
(
∆m4

χ + 3∆m3
χT + 32∆m2

χT
2 + 114∆mχT

3 + 144T 4
) p2

m2
χ

] (
fχ± − fχ0e−

∆mχ
T

)

− 8

3
∆mχT

3
(
∆m2

χ + 6∆mχT + 12T 2
)( p2

Tm2
χ

fχ±
+

p ·∇pfχ±

mχ

)

+
2

3
T 3

(
∆m4

χ + 10∆m3
χT + 60∆m2

χT
2 + 240∆mχT

3 + 480T 4
)(

∆pfχ± +
p ·∇pfχ±

mχT
+

3

mχT
fχ±

)

−2T 2∆mχ

(
∆m2

χ + 6∆mχT + 12T 2
) p2

m2
χ

fχ±

}
(A11)

Ĉχ±,is

[
fχ0 , fχ±

]

E
=

∑ 2G2
Fg̃Wabgχ0

π3

{[
4T 3

(
∆m2

χ + 6∆mχT + 12T 2
)(

1− ∆mχ

mχ

)

−2∆m2
χT

2 (∆mχ + 2T )
p

mχ
+

2

3
T
(
∆m4

χ − 4∆m3
χT − 10∆m2

χT
2 + 30∆mχT

3 + 144T 4
) p2

m2
χ

] (
fχ0e−

∆mχ
T − fχ±

)

+
8

3
∆mχT

3
(
∆m2

χ + 6∆mχT + 12T 2
)( p2

Tm2
χ

fχ0 +
p ·∇pfχ0

mχ

)
e−

∆mχ
T

+
2

3
T 3

(
∆m4

χ + 10∆m3
χT + 60∆m2

χT
2 + 240∆mχT

3 + 480T 4
)(

∆pfχ0 +
p ·∇pfχ0

mχT
+

3

mχT
fχ0

)
e−

∆mχ
T

+2T 2∆mχ

(
∆m2

χ + 6∆mχT + 12T 2
) p2

m2
χ

fχ0e−
∆mχ

T

}
(A12)

The ordering of the terms is such that, when integrated over the momentum p of the neutralino (first equation) or
the chargino (second equation), the terms on the third and forth row of the two expressions cancel out while, for
what regards the others, it can be seen that once summing the two equations one obtains a term proportional to(

p2

m2
χ
− 3

)(
fχ0

e−
∆mχ

T − fχ±

)
which cancels out too. The Boltzmann equation in (42) are then obtained after the

momentum integration p and using the fact that T/mχ,∆mχ/mχ # 1 which allows to keep just the 0th order terms
in both (A11) and (A12).
The equation for the neutralino temperature can be obtained from the second moment of the Boltzmann equation

in phase space:

∫
d3p

(2π)3
gχ0p2 (∂t −Hp ·∇p) fχ0(p) =

∫
d3p

(2π)3
gχ0

p2

E
Ĉχ0 [fχ0 ] (A13)

The left hand side can be rewritten as:

3nχ0

dTN

dt
+ 15HTχ0

nχ0 + 3Tχ0

dnχ0

dt
(A14)

For what regards the right-hand side, we have that the contribution from annihilations, can be computed using the
S-wave approximation. In this case in fact we can assume that the dipendence of the pair annihilation cross section
on the momentum can be neglected and use the same factorization implemented when assuming kinetic equilibrium,
i.e. :

∫
d3p1

(2π)3
d3p2

(2π)3
g1g2 (σv) (f1f2 − feq

1 feq
2 ) = 〈σv〉 (n1n2 − n1,eqn2,eq) (A15)

with

〈σv〉 =
∫
d3p1d3p2(σv)f1f2∫
d3p1d3p2f1f2

. (A16)
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After computing all integrals, the inelastic scattering contributions to the neutralino and chargino collision terms are
then found to be:
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on the momentum can be neglected and use the same factorization implemented when assuming kinetic equilibrium,
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After computing all integrals, the inelastic scattering contributions to the neutralino and chargino collision terms are
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The ordering of the terms is such that, when integrated over the momentum p of the neutralino (first equation) or
the chargino (second equation), the terms on the third and forth row of the two expressions cancel out while, for
what regards the others, it can be seen that once summing the two equations one obtains a term proportional to(

p2

m2
χ
− 3

)(
fχ0

e−
∆mχ

T − fχ±

)
which cancels out too. The Boltzmann equation in (42) are then obtained after the

momentum integration p and using the fact that T/mχ,∆mχ/mχ # 1 which allows to keep just the 0th order terms
in both (A11) and (A12).
The equation for the neutralino temperature can be obtained from the second moment of the Boltzmann equation

in phase space:

∫
d3p

(2π)3
gχ0p2 (∂t −Hp ·∇p) fχ0(p) =

∫
d3p

(2π)3
gχ0

p2

E
Ĉχ0 [fχ0 ] (A13)

The left hand side can be rewritten as:

3nχ0

dTN

dt
+ 15HTχ0

nχ0 + 3Tχ0

dnχ0

dt
(A14)

For what regards the right-hand side, we have that the contribution from annihilations, can be computed using the
S-wave approximation. In this case in fact we can assume that the dipendence of the pair annihilation cross section
on the momentum can be neglected and use the same factorization implemented when assuming kinetic equilibrium,
i.e. :

∫
d3p1

(2π)3
d3p2

(2π)3
g1g2 (σv) (f1f2 − feq

1 feq
2 ) = 〈σv〉 (n1n2 − n1,eqn2,eq) (A15)

with

〈σv〉 =
∫
d3p1d3p2(σv)f1f2∫
d3p1d3p2f1f2

. (A16)
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After computing all integrals, the inelastic scattering contributions to the neutralino and chargino collision terms are
then found to be:
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The ordering of the terms is such that, when integrated over the momentum p of the neutralino (first equation) or
the chargino (second equation), the terms on the third and forth row of the two expressions cancel out while, for
what regards the others, it can be seen that once summing the two equations one obtains a term proportional to(
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− 3

)(
fχ0

e−
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T − fχ±

)
which cancels out too. The Boltzmann equation in (42) are then obtained after the

momentum integration p and using the fact that T/mχ,∆mχ/mχ # 1 which allows to keep just the 0th order terms
in both (A11) and (A12).
The equation for the neutralino temperature can be obtained from the second moment of the Boltzmann equation

in phase space:
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gχ0p2 (∂t −Hp ·∇p) fχ0(p) =
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The left hand side can be rewritten as:

3nχ0
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+ 15HTχ0

nχ0 + 3Tχ0

dnχ0
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(A14)

For what regards the right-hand side, we have that the contribution from annihilations, can be computed using the
S-wave approximation. In this case in fact we can assume that the dipendence of the pair annihilation cross section
on the momentum can be neglected and use the same factorization implemented when assuming kinetic equilibrium,
i.e. :

∫
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(2π)3
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g1g2 (σv) (f1f2 − feq

1 feq
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