Flavour physics as a probe of SUSY scenarios and interplay with the LHC results

Nazila Mahmoudi

CERN TH & LPC Clermont-Ferrand (France)

Planck 2011 - Lisbon, 31 May 2011

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
•0				
Introduction				

- We know that going beyond the SM is a necessity.
- Good point: The LHC is running and we hope that we will find something new!
- BUT: Many theoretical models beyond the SM, within reach of the LHC, in the market.

 \Rightarrow Need for additional information and constraints.

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
•0				
Introduction				

- We know that going beyond the SM is a necessity.
- Good point: The LHC is running and we hope that we will find something new!
- BUT: Many theoretical models beyond the SM, within reach of the LHC, in the market.

 \Rightarrow Need for additional information and constraints.

The most used constraints:

- Electroweak precision tests
- The anomalous magnetic moment of the muon $(g-2)_{\mu}$
- Flavour Physics
- Cosmological constraints, in particular from the dark matter relic density

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
•0				
Introduction				

- We know that going beyond the SM is a necessity.
- Good point: The LHC is running and we hope that we will find something new!
- BUT: Many theoretical models beyond the SM, within reach of the LHC, in the market.

 \Rightarrow Need for additional information and constraints.

The most used constraints:

- Electroweak precision tests
- The anomalous magnetic moment of the muon $(g-2)_{\mu}$
- Flavour Physics
- Cosmological constraints, in particular from the dark matter relic density

Introductio	on Flavour Observables	SuperIso	FLHA	Conclusion
00	000000000	00		
Motiva	tions			
	Flavour Physics			
	a consitive to new physics effects			
	• sensitive to new physics enects			
	 complementary to other searche 	es		
	• probos sostors inaccossible to di	iract coarchac		
	• probes sectors maccessible to u	rect searches		
	• tests quantum structure of the	SM at loop level		
	a constrains parameter spaces of	now physics scoppri		
	• constrains parameter spaces of	new physics scenari	0S	
	• valuable data already available			
	,			

- promising experimental situation
- consistency checks with direct observations

In R-parity conserving models, SUSY effects appear:

- in the sparticle loops
 - \rightarrow radiative and electroweak penguins
- in the charged Higgs mediated tree level decays
 - \rightarrow leptonic and semileptonic decays

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
	000000000			
Flavour Obser	rvables			

I) Radiative penguin decays

- inclusive branching ratio of $B
 ightarrow X_s \gamma$
- ${\, \bullet \,}$ isospin asymmetry of $B \to K^* \gamma$

II) Electroweak penguin decays

- branching ratio of $B_s
 ightarrow \mu^+ \mu^-$
- inclusive branching ratio of $B \to X_s \ell^+ \ell^-$
- branching ratio of $B o K^* \mu^+ \mu^-$

III) Neutrino modes

- branching ratio of $B \rightarrow \tau \nu$
- branching ratio of B
 ightarrow D au
 u
- branching ratios of $D_s
 ightarrow au
 u/\mu
 u$
- branching ratio of $K \rightarrow \mu \nu$
- double ratios of leptonic decays

Introduction Flavour Observables	Flavour Observables	SuperIso	FLHA	Conclusion	
	000000000				

1) Radiative penguin decays: Inclusive Branching ratio of $B o X_{m s} \gamma$

Effective Hamiltonian: $\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum C_i(\mu) \mathcal{O}_i(\mu)$ Important operators: $\mathcal{O}_7 = \frac{e}{(4\pi)^2} m_b (\bar{s}_L \sigma^{\mu\nu} b_R) F_{\mu\nu}$ $\mathcal{O}_8 = \frac{g}{(4\pi)^2} m_b (\bar{s}_L \sigma^{\mu\nu} T^* b_R) G_{\mu\nu}^*$

$$\mathcal{B}[\bar{B} \to X_s \gamma]_{E_{\gamma} > E_0} = \mathcal{B}[\bar{B} \to X_c e \bar{\nu}]_{exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi C} \left[\mathcal{P}(E_0) + \mathcal{N}(E_0) \right]$$

$$P(E_0) = P^{(0)}(\mu_b) + \alpha_s(\mu_b) \left[P_1^{(1)}(\mu_b) + P_2^{(1)}(E_0, \mu_b) \right] \\ + \alpha_s^2(\mu_b) \left[P_1^{(2)}(\mu_b) + P_2^{(2)}(E_0, \mu_b) + P_3^{(2)}(E_0, \mu_b) \right] + \mathcal{O} \left(\alpha_s^3(\mu_b) \right) \\ \left\{ \begin{array}{l} P^{(0)}(\mu_b) &= \left(C_7^{(0)\text{eff}}(\mu_b) \right)^2 \\ P_1^{(1)}(\mu_b) &= 2C_7^{(0)\text{eff}}(\mu_b) C_7^{(1)\text{eff}}(\mu_b) \\ P_1^{(2)}(\mu_b) &= \left(C_7^{(1)\text{eff}}(\mu_b) \right)^2 + 2C_7^{(0)\text{eff}}(\mu_b) C_7^{(2)\text{eff}}(\mu_b) \end{array} \right.$$

M. Misiak et al., Phys. Rev. Lett. 98 (2007)

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion		
	000000000					
D Padiative penguin decays: Inclusive Branching ratio of $B \rightarrow X \alpha$						

- Theoretical values for the SM: NNLO (Misiak & Steihauser '07): $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.15 \pm 0.23) \times 10^{-4}$ or (Becher & Neubert '07): $\mathcal{B}[\bar{B} \to X_s \gamma] = (2.98 \pm 0.26) \times 10^{-4}$ or (Gambino & Giordano '08): $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.30 \pm 0.24) \times 10^{-4}$
- Experimental values: HFAG 2010: $\mathcal{B}[\bar{B} \to X_s \gamma] = (3.55 \pm 0.25) \times 10^{-4}$

Nazila Mahmoudi

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion		
	000000000					
II) Electroweak penguin decays: $b \rightarrow s\ell\ell$ transitions						

Effective Hamiltonian:

 $\mathcal{H}_{\mathrm{eff}} = -rac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} (\sum C_{i}(\mu) \mathcal{O}_{i}(\mu) + \sum C_{Q_{i}}(\mu) Q_{i}(\mu))$

Important operators:

Very sensitive to new physics, especially for large $\tan \beta$:

SUSY contributions in $\mathcal{B}(B_s \to \mu^+ \mu^-)$ can lead to an O(100) enhancement over the SM!

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion		
	000000000					
II) Electroweak penguin decays: $b ightarrow s\ell\ell$ transitions						

•

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
	000000000			
III) Neutrino moo	les			

Tree level processes, mediated by W^+ and H^+ , higher order corrections from sparticles

Advantage: very sensitive to the charged Higgs mass and its couplings to fermions Drawback: uncertainties from hadronic decay constants and CKM matrix elements.

Typical example: branching ratio of $B \rightarrow \tau \nu$

$$\begin{split} \mathcal{B}(B \to \tau \nu) &= \frac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \left|1 - \left(\frac{m_B^2}{m_{H^+}^2}\right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right|^2 \\ \text{with: } \epsilon_0 &= -\frac{2\alpha_s}{3\pi} \frac{\mu}{m_{\tilde{g}}} H_2 \left(\frac{m_Q^2}{m_{\tilde{g}}^2}, \frac{m_D^2}{m_{\tilde{g}}^2}\right) \end{split}$$

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
	000000000			
III) Neutrino r	nodes			

D. Eriksson, FM, O. Stål, JHEP 0811 (2008)

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion		
	0000000000					
III) Neutrino modes: Double ratios of leptonic decays						

For example:

$$R = \left(\frac{\mathrm{BR}(B_{\mathsf{s}} \to \mu^{+}\mu^{-})}{\mathrm{BR}(B_{u} \to \tau\nu)}\right) / \left(\frac{\mathrm{BR}(D_{\mathsf{s}} \to \tau\nu)}{\mathrm{BR}(D \to \mu\nu)}\right)$$

From the form factor and CKM matrix point of view:

$$R \propto \frac{|V_{ts}V_{tb}|^2}{|V_{ub}|^2} \frac{(f_{B_s}/f_B)^2}{(f_{D_s}/f_D)^2} \qquad \text{with:} \qquad \frac{(f_{B_s}/f_B)}{(f_{D_s}/f_D)} \approx 1$$

R has no dependence on the decay constants, contrary to each decay taken individually!

- No dependence on lattice quantities
- Interesting for V_{ub} determination
- Interesting for probing new physics
- Promising experimental situation

B. Grinstein, Phys. Rev. Lett. 71 (1993) A.G. Akeroyd, FM, JHEP 1010 (2010)

Introduction	Flavour Observables	Superiso	FLHA	Conclusion
	00000000000			
Combined cons	traints			

D. Eriksson, FM, O. Stål, JHEP 0811 (2008)

Introduction	Flavour Observables	Superiso	FLHA	Conclusion
	0000000000			
LHC and flavour	observables			

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
	000000000			
Phenomenologica	I MSSM			

Many studies have been performed within several constrained SUSY models (CMSSM, mSUGRA, NUHM, ...). How do their conclusions change when moving to the MSSM?

Extended MSSM scan: 14 parameters scan (assuming unified squark masses)

Two-phase program:

1) perform MSSM scans, study effects of different codes, define and apply constraints, ...

Work in progress, with Marco Battaglia and Alexandre Arbey.

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
		•0		
SuperIso				

SuperIso

- public C program
- dedicated to the flavour physics observable calculations
- various models implemented
- interfaced to several spectrum calculators
- modular program with a well-defined structure
- SuperIso Relic (with Alex Arbey): extension to the relic density calculation, featuring alternative cosmological scenarios
- complete reference manuals available

Webpage: http://superiso.in2p3.fr

Introduction	Flavour Observables	Superiso	FLHA	Conclusion
		00		
SuperIso				

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
			•	
Flavour Les Hou	ches Accord			

The Flavour Les Houches Accord format

Standard format for flavour related quantities, providing:

- A model independent parametrization
- A standalone flavour output in the FLHA format
- Based on the existing SLHA structure
- A clear and well-defined structure for interfacing computational tools of "New Physics" models with low energy flavour calculations
- Allows different programs to talk and be interfaced, and users to have clear and well defined results that can eventually be used for different purposes

Involved people

F. Mahmoudi, S. Heinemeyer, A. Arbey, A. Bharucha, T. Goto, T. Hahn,

U. Haisch, S. Kraml, M. Muhlleitner, J. Reuter, P. Skands, P. Slavich

For more information

- Les Houches write-up: arXiv:1003.1643 [hep-ph]
- Official write-up: arXiv:1008.0762 [hep-ph]

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
				•
Conclusion				

- Indirect constraints and in particular flavour physics are essential to restrict new physics parameters
- Important for consistency checks with collider data
- This kind of analysis can be generalized to more new physics scenarios, in particular beyond SUSY constrained scenarios

- We have learned a lot from flavour physics so far
- But what is still to be discovered is more!

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
Backup				

Backup

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
ATLAS contours				

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
CMS contours				

Introduction	Flavour Observables	SuperIso	FLHA	Conclusion
CMS contours				

Nazila Mahmoudi