New Physics in Top Pair Production: Hints and Constraints

Manuel Pérez-Victoria University of Granada & CAFPE

based on work with Juan Antonio Aguilar Saavedra arXiv:1103.2765 (JHEP) arXiv:1104.1385 (PLB)

Outline

- New physics contributing to $t\bar{t}$ and $t\bar{t}$ production
- Forward-backward asymmetry @ Tevatron
- $t\bar{t}$ tail @ LHC
- Like-sign constraints

Top pair production

•Total Cross Section (shape) √
•FB Asymmetry (shape) ??!! ☺

Opposite-sign tops

Vectors	Rep	Channel
\mathcal{B}	$(1,1)_0$	s,t
\mathcal{W}	$(1,3)_0$	s,t
\mathcal{B}^1	$(1,1)_1$	t
${\cal G}$	$(8,1)_0$	s,t
${\cal H}$	$(8,3)_0$	s,t
\mathcal{G}^1	$(8,1)_1$	t
\mathcal{Q}^1	$(3,2)_{\frac{1}{6}}$	u
\mathcal{Q}^5	$(3,2)_{-rac{5}{6}}$	u
\mathcal{Y}^1	$(\overline{6},2)_{rac{1}{6}}$	u
\mathcal{Y}^5	$(\overline{6}, \overline{2})_{-rac{5}{6}}$	u

Scalars	Rep	Channel
ϕ	$(1,2)_{-\frac{1}{2}}$	s,t
Φ	$(8,2)_{-\frac{1}{2}}$	s,t
ω^1	$(3,1)_{-\frac{1}{3}}$	u
Ω^1	$(\bar{6},1)_{-\frac{1}{3}}$	u
ω^4	$(3,1)_{-\frac{4}{3}}$	u
Ω^4	$(\bar{6},1)_{-\frac{4}{3}}$	u
σ	$(3,3)_{-\frac{1}{3}}$	U
\sum	$(\bar{6},3)_{-\frac{1}{3}}$	u

Same-sign tops

Vectors	Rep	Channel	Scalars	Rep	Channel
\mathcal{B}	$(1,1)_0$	t	ϕ	$(1,2)_{-\frac{1}{2}}$	t
\mathcal{W}	$(1,3)_0$	t	Φ	$(8,2)_{-1}$	t
			-		
\mathcal{G}	$(8,1)_0$	t			
\mathcal{H}	$(8,3)_0$	t			
			Ω^4	$(\bar{6},1)_{-\frac{4}{3}}$	S
\mathcal{Q}^5	$(3,2)_{-rac{5}{6}}$	S			
			Σ	$(\bar{6},3)_{-\frac{1}{2}}$	S
\mathcal{Y}^5	$(6,2)_{-\frac{5}{6}}$	S		<u>`´´3</u>	

Opposite sign tops @ Tevatron

(CDF)

$$\sigma_t = \sigma^F + \sigma^B = \sigma_t^{SM}$$

$$A_{FB} = \frac{\sigma^F - \sigma^B}{\sigma^F + \sigma^B} \neq A_{FB}^{SM}$$

ew

Opposite sign tops @ Tevatron

$$\sigma_{t} = \sigma^{F} + \sigma^{B} = \sigma_{t}^{SM}$$
(CDF)
$$A_{FB} = \frac{\sigma^{F} - \sigma^{B}}{\sigma^{F} + \sigma^{B}} \neq A_{FB}^{SM}$$

$$\sigma^{F,B} = \sigma^{F,B}_{\rm SM} + \sigma^{F,B}_{\rm int} + \sigma^{F,B}_{\rm new}$$

New physics must satisfy one of the following eqs.

$$\bigstar \ \sigma_{\text{int}}^F + \sigma_{\text{int}}^B = 0$$

$$\bigstar \ \sigma_{\text{int}}^F + \sigma_{\text{int}}^B = -(\sigma_{\text{new}}^F + \sigma_{\text{new}}^B)$$

Opposite sign tops @ Tevatron

$$\sigma_{t} = \sigma^{F} + \sigma^{B} = \sigma_{t}^{SM}$$
(CDF)
$$A_{FB} = \frac{\sigma^{F} - \sigma^{B}}{\sigma^{F} + \sigma^{B}} \neq A_{FB}^{SM}$$

$$\sigma^{F,B} = \sigma^{F,B}_{\rm SM} + \sigma^{F,B}_{\rm int} + \sigma^{F,B}_{\rm new}$$

New physics must satisfy one of the following eqs.

$$\Rightarrow \sigma_{int}^{F} + \sigma_{int}^{B} = 0 \quad \text{E.g. } \mathcal{G} \text{ axial}$$

$$\Rightarrow \sigma_{int}^{F} + \sigma_{int}^{B} = -(\sigma_{new}^{F} + \sigma_{new}^{B}) \quad \text{At given } m_{t\bar{t}}$$

$$\text{Large coupling/mass} \implies \text{Large effects elsewhere}$$

tt Tail @ LHC

If A_{FB} is due to new physics, we should notice it in the cross section distribution at large $m_{t\bar{t}}$

tt Tail @ LHC

If A_{FB} is due to new physics, we should notice it in the cross section distribution at large $m_{t\bar{t}}$

Talk by J.A. Aguilar-Saavedra on Friday

Like-sign constraints

 $uu \rightarrow tt$ very small in SM $\Rightarrow \sigma(tt) = \sigma_{new}(tt)$ (no interference)

 $\sigma(tt + \overline{tt}) < 0.49 \,\mathrm{pb} \qquad \text{CDF (6.1 fb}^{-1})$

 $\sigma(tt) < 7.5 \, {
m pb}$ LHC (35 pb⁻¹) $\sigma(tt) < 1.4 \, {
m pb}$ LHC (1 fb⁻¹)

Limits on Couplings/Masses (heavy)

Z' (t-channel)

 $CDF 6.1 \text{ fb}^{-1}$ G_{μ} $g_{13}^u \mid / \Lambda \text{ (TeV}^{-1})$ 2 LHC 1 fb^{-1} 35 pb^{-1} $|g_{13}^{q}| / \Lambda \text{ (TeV}^{-1})$

Gluon' (t-channel)

 $-\mathcal{B}_{\mu}\left(g_{13}^{q}\bar{q}_{L1}\gamma^{\mu}q_{L3}+g_{13}^{u}\bar{u}_{R1}\gamma^{\mu}u_{R3}\right) -\mathcal{G}_{\mu}^{a}\left(g_{13}^{q}\bar{q}_{L1}\gamma^{\mu}\frac{\lambda^{a}}{2}q_{L3}+g_{13}^{u}\bar{u}_{R1}\gamma^{\mu}\frac{\lambda^{a}}{2}q_{L3}u_{R3}\right)$

Limits on Couplings/Masses (heavy)

			LHC expected				
			CDF limit	35 pb^{-1}	$1 {\rm ~fb^{-1}}$		
\mathcal{W}_{μ}	$ g_{13} /\Lambda$	<	$2.02_{-0.08}^{+0.07}$	$0.827^{+0.020}_{-0.021}$	$0.544_{-0.014}^{+0.013}$	TeV^{-1}	
\mathcal{H}_{μ}	$ g_{13} /\Lambda$	<	$3.50^{+0.13}_{-0.13}$	$1.433_{-0.037}^{+0.034}$	$0.942_{-0.024}^{+0.022}$	TeV^{-1}	
\mathcal{Q}^5_μ	$ g_{11}g_{33} /\Lambda^2$	<	$3.72^{+0.26}_{-0.27}$	$0.716\substack{+0.038\\-0.039}$	$0.310\substack{+0.017\\-0.017}$	TeV^{-2}	
\mathcal{Y}^5_μ	$ g_{11}g_{33} /\Lambda^2$	<	$8.6_{-0.9}^{+0.7}$	$1.32_{-0.06}^{+0.06}$	$0.568\substack{+0.025\\-0.027}$	TeV^{-2}	
ϕ	$ g^u_{13}g^u_{31} /\Lambda^2$	<	$11.2^{+0.8}_{-0.8}$	$1.94_{-0.10}^{+0.09}$	$0.838^{+0.040}_{-0.043}$	TeV^{-2}	
Φ	$ g^u_{13}g^u_{31} /\Lambda^2$	<	$21.3^{+1.6}_{-1.6}$	$3.67\substack{+0.18 \\ -0.19}$	$1.59_{-0.08}^{+0.08}$	TeV^{-2}	
Ω^4	$ g_{11}g_{33} /\Lambda^2$	<	$3.79_{-0.28}^{+0.27}$	$0.684_{-0.035}^{+0.033}$	$0.296\substack{+0.014\\-0.015}$	TeV^{-2}	
\sum	$ g_{11}g_{33} /\Lambda^2$	<	$2.04_{-0.15}^{+0.15}$	$0.342^{+0.017}_{-0.017}$	$0.148\substack{+0.007\\-0.008}$	TeV^{-2}	

tt vs tt

- Some common couplings, different combinations in general
- Direct relation only for t-channel exchange of real field with neutral component: $\mathcal{B}, \mathcal{W}, \mathcal{G}, \mathcal{H},$

• No direct relation for t-channel exchange of complex reps: ϕ , Φ

t-channel light Z'

tt vs $t\overline{t}$

Further remarks:

• These strong constraints can be avoided in models with an *additional degenerate boson* with coupling differing by factor of i (to build a complex field).

 Intriguing hints of new physics in top pair production at Tevatron

• Also, robust constraints from top pairs at Tevatron and LHC (more results in Aguilar-Saavedra's talk)

• Using gauge symmetries, it is possible to discuss new physics in a general model-independent fashion.

 More (exciting?) news from CERN and Fermilab very soon

Back Slides

Back Slides

(Color, Isospin) Hypercharge of new fields

Label	Rep.	Interaction Lagrangian	Sym.
(\mathcal{B}_{μ})	$(1,1)_0$	$-\left(g_{ij}^{q}\bar{q}_{Li}\gamma^{\mu}q_{Lj}+g_{ij}^{u}\bar{u}_{Ri}\gamma^{\mu}u_{Rj}+g_{ij}^{d}\bar{d}_{Ri}\gamma^{\mu}d_{Rj}\right)\mathcal{B}_{\mu}$	$g = g^{\dagger}$
\mathcal{W}_{μ}	$(1,3)_0$	$-g_{ij}\bar{q}_{Li}\gamma^{\mu}\tau^{I}q_{Lj}\mathcal{W}^{I}_{\mu}$	$g = g^{\dagger}$
\mathcal{B}^1_μ	$(1,1)_1$	$-g_{ij}\overline{d}_{Ri}\gamma^{\mu}u_{Rj}\mathcal{B}^{1\dagger}_{\mu}+\text{h.c.}$	_
\mathcal{G}_{μ}	$(8,1)_0$	$-\left(g_{ij}^{q}\bar{q}_{Li}\gamma^{\mu}\frac{\lambda^{a}}{2}q_{Lj}+g_{ij}^{u}\bar{u}_{Ri}\gamma^{\mu}\frac{\lambda^{a}}{2}u_{Rj}+g_{ij}^{d}\bar{d}_{Ri}\gamma^{\mu}\frac{\lambda^{a}}{2}d_{Rj}\right)\mathcal{G}_{\mu}^{a}$	$g = g^{\dagger}$
\mathcal{H}_{μ}	$(8,3)_0$	$-g_{ij}\bar{q}_{Li}\gamma^{\mu}\tau^{I}\frac{\lambda^{a}}{2}q_{Lj}\mathcal{H}_{\mu}^{aI}$	$g = g^{\dagger}$
\mathcal{G}^1_μ	$(8,1)_1$	$-g_{ij}\overline{d}_{Ri}\gamma^{\mu}\frac{\lambda^{a}}{2}u_{Rj}\mathcal{G}^{1a\dagger}_{\mu} + \text{h.c.}$	-
\mathcal{Q}^1_μ	$(3,2)_{\frac{1}{6}}$	$-g_{ij}\varepsilon_{abc}\bar{d}_{Rib}\gamma^{\mu}\epsilon q^{c}_{Ljc}\mathcal{Q}^{1a\dagger}_{\mu} + \text{h.c.}$	-
Q^5_{μ}	$(3,2)_{-\frac{5}{6}}$	$-g_{ij}\varepsilon_{abc}\bar{u}_{Rib}\gamma^{\mu}\epsilon q^{c}_{Ljc}\mathcal{Q}^{5a\dagger}_{\mu}+\text{h.c.}$	_
\mathcal{Y}^1_μ	$(\overline{6},2)_{\frac{1}{6}}$	$-g_{ij\frac{1}{2}}\left[\bar{d}_{Ria}\gamma^{\mu}\epsilon q^{c}_{Ljb} + \bar{d}_{Rib}\gamma^{\mu}\epsilon q^{c}_{Lja}\right]\mathcal{Y}^{1ab\dagger}_{\mu} + \text{h.c.}$	_
$({\cal Y}^5_\mu)$	$(\bar{6},2)_{-\frac{5}{6}}$	$-g_{ij\frac{1}{2}}\left[\bar{u}_{Ria}\gamma^{\mu}\epsilon q_{Ljb}^{c}+\bar{u}_{Rib}\gamma^{\mu}\epsilon q_{Lja}^{c}\right]\mathcal{Y}_{\mu}^{5ab\dagger}+\text{h.c.}$	_
ϕ	$(1,2)_{-\frac{1}{2}}$	$-g_{ij}^u \bar{q}_{Li} u_{Rj} \phi - g_{ij}^d \bar{q}_{Li} d_{Rj} \tilde{\phi} + \text{h.c.}$	_
(Φ)	$(8,2)_{-\frac{1}{2}}$	$-g_{ij}^u \bar{q}_{Li} \frac{\lambda^a}{2} u_{Rj} \Phi^a - g_{ij}^d \bar{q}_{Li} \frac{\lambda^a}{2} d_{Rj} \tilde{\Phi}^a + \text{h.c.}$	_
ω^1	$(3,1)_{-\frac{1}{3}}$	$-g_{ij}\varepsilon_{abc}\bar{d}_{Rib}u^c_{Rjc}\omega^{1a\dagger}+\text{h.c.}$	_
Ω^1	$(\bar{6},1)_{-\frac{1}{3}}$	$-g_{ij\frac{1}{2}}\left[\bar{d}_{Ria}u^c_{Rjb} + \bar{d}_{Rib}u^c_{Rja}\right]\Omega^{1ab\dagger} + \text{h.c.}$	_
ω^4	$(3,1)_{-\frac{4}{3}}$	$-g_{ij}\varepsilon_{abc}\overline{u}_{Rib}u_{Rjc}^c\omega^{4a\dagger}+\text{h.c.}$	$g = -g^T$
(Ω^4)	$(\bar{6},1)_{-\frac{4}{3}}$	$-g_{ij\frac{1}{2}}\left[\bar{u}_{Ria}u^c_{Rjb} + \bar{u}_{Rib}u^c_{Rja}\right]\Omega^{4ab\dagger} + \text{h.c.}$	$g = g^T$
σ	$(3,3)_{-\frac{1}{3}}$	$-g_{ij}\varepsilon_{abc}\bar{q}_{Lib}\tau^{I}\epsilon q^{c}_{Ljc}\sigma^{a\dagger} + \text{h.c.}$	$g = -g^T$
(Σ)	$(\bar{6},3)_{-\frac{1}{3}}$	$-g_{ij\frac{1}{2}}\left[\bar{q}_{Lia}\tau^{I}\epsilon q_{Ljb}^{c}+\bar{q}_{Lib}\tau^{I}\epsilon q_{Lja}^{c}\right]\Sigma^{Iab\dagger}+\text{h.c.}$	$g = g^T$

Same sign

Kinematics

Tevatron

Efficiencies

Run Number: 166658, Event Number: 34533931 Date: 2010-10-11 23:57:42 CEST