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Introduction

Lorentz violations
Lorentz invariance is one of the best tested symmetries of Nature.
However, several authors argued that the Lorentz invariance may be broken
above some very high energy scale ΛL → small effects at low energies.

At low energies the effects of Lorentz violations are described by an
effective quantum field theory (SME) [Kostelecký et al.];

Explicit symmetry breaking ⇒ many independent parameters:

L = L0 +
∑
i

δiOi = L0 + dL(δ)

Idea: Collect all the parameters δi into a single quantity that measures the
“amount of violation”.

define a distance d(L,L′) between two Lagrangians L and L′;

calculate the distance d(L, S) between a given theory L and the
surface S of symmetry-preserving theories with δi = 0.
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Distance between QFTs Definition & properties

Distance between QFTs

Consider a small perturbation

L + dL = L(λ) +
∑
I

dλIOI = L(λ+ dλ).

Define the infinitesimal distance at energy E = 1/x̂ as

d`2 = 2π4x̂8〈dL(x)dL(0)†〉 ≡
∑
IJ

dλIgIJ(x̂, λ)dλJ
∗
,

where xµ = (x̂, 0). Reflection positivity ⇒ d` ≥ 0.

Finite distance between two Lagrangian theories:

d(L1,L2) = min
γ12

∫
γ12

d`,

where γ12 is a path in parameter space connecting L1 and L2.
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Distance between QFTs Definition & properties

Some properties & issues

d has all the properties of a distance in parameter-space;

the distance is RG-invariant [Zamolodchikov ’86];

d depends on the energy scale E = 1/x̂;

terms ∝ field equations do not contribute to the distance;

d depends on total derivatives in the Lagrangian;

d depends on reparametrizations of the fields and the coordinates.

To eliminate unwanted dependencies we can either:

minimize the distance over reparametrizations,

choose some convention to fix a universal form for the Lagrangians.
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Distance between QFTs Distance from a symmetry-preserving surface

Distance from the Lorentz-invariant surface

LV operator Oi ∼ (Oi + Lorentz-invariant terms).
⇒ include also Lorentz-invariant perturbations:

LLI(λ) +
∑
i

ζiOi +
∑
a

ξaOLIa = LLI(λ
′) +

∑
i

ζiOi

Minimizing d` w.r. to ξa gives the distance to the Lorentz surface {ζ = 0}:

d2L = min
ξa

[
ζigijζ

j + 2ζigiaξ
a + ξagabξ

b
]
≡ ζiγijζj ,

where the reduced metric is

γij = gij − giahabgbj , hacgcb = δab .
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Distance between QFTs Simple examples

Example I: finite distance between massive scalar fields
Consider a scalar field with Lagrangian, and perturbation m→ m+ dm,

L =
1

2
(∂φ)2 +

m2

2
φ2, dL = mdmφ2.

The distance reads

d` =
1

2
K1(mx̂)m2x̂3dm, d(m1,m2) =

1

2

∫ m2x̂

m1x̂
u2K1(u)du.

2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

0.30

Plot of d`/du as a function of u = mx̂.

d(m1,m2)→ 0 both in the UV
and in the IR,

d(m, 0)→ 0 as x̂→ 0,

d(m, 0)→ 1 as x̂→∞.
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Distance between QFTs Simple examples

Example II: minimization over tangent displacements

Consider N free, Lorentz-violating scalar fields

L =
1

2

N∑
I=1

(∂µφI)
2 −

N∑
I=1

dεI(∇iφI)2 ≡ L0 + dL.

The distance between L and L0 reads

d`2 = 3
∑
I

(dεI)
2.

If all dεI ’s are equal, dεI = da ⇒ the theory is Lorentz-invariant.
Thus we write dεI = da+ dε̃I , and we minimize over da, getting

d`2r =
∑
IJ

dε̃IγIJdε̃J =
3

N

∑
I<J

(dε̃I − dε̃J)2, γIJ = 3δIJ −
3

N
1IJ .

At the minimum, dεI = dε̃I − 1
N

∑
J dε̃J , which satisfies

∑
I dεI = 0.
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Lorentz-violating QED & experimental bounds Low-energy LV QED

Lorentz-violating QED at low energies
Standard Model Extension, QED and CPT -even sector [Kostelecký et al.]

L = LQED−
1

4
kµνρσF FµνFρσ +

1

2
ψ̄
(
icµνγµ

↔
Dν + idµνγ5γµ

↔
Dν +Hµνσµν

)
ψ.

Minimization over unphysical parameters

Tangent displacements ∝ F 2, F F̃ ⇒ (kF )µν µν = εµνρσk
µνρσ
F = 0.

Spinor reparametrizations ψ → ψ + iωµνσµνψ ⇒ symmetric c and d.

d` does not depend on cµµ and dµµ ⇒ we can set cµµ = dµµ = 0.

Reparametrizations xµ → xµ + daµνxν and Aµ → Aµ − daνµAν
⇒ (kF )αµαν + cµν − 1

4gµνc
α
α = 0.

These constraints are in agreement with the conventions used in literature.

d`2QED =
3∑

µν=0

[2

3
(k̃µν−2cµν)2+4(dµν)2+x̂2(Hµν)2

]
+2

3∑
i,j=1

(κ̃ije+)2+(κ̃ijo−)2,

where k̃µν = (kF )µανα, and κ̃e+, κ̃o− are combinations of kF .
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L = LQED−
1

4
kµνρσF FµνFρσ +

1

2
ψ̄
(
icµνγµ

↔
Dν + idµνγ5γµ

↔
Dν +Hµνσµν

)
ψ.

Minimization over unphysical parameters

Tangent displacements ∝ F 2, F F̃ ⇒ (kF )µν µν = εµνρσk
µνρσ
F = 0.

Spinor reparametrizations ψ → ψ + iωµνσµνψ ⇒ symmetric c and d.

d` does not depend on cµµ and dµµ ⇒ we can set cµµ = dµµ = 0.

Reparametrizations xµ → xµ + daµνxν and Aµ → Aµ − daνµAν
⇒ (kF )αµαν + cµν − 1

4gµνc
α
α = 0.

These constraints are in agreement with the conventions used in literature.

d`2QED =

3∑
µν=0

[2

3
(k̃µν−2cµν)2+4(dµν)2+x̂2(Hµν)2

]
+2

3∑
i,j=1

(κ̃ije+)2+(κ̃ijo−)2,

where k̃µν = (kF )µανα, and κ̃e+, κ̃o− are combinations of kF .
Dario Buttazzo (SNS, Pisa) Distance between QFTs & Lorentz violations Planck 2011 9 / 13



Lorentz-violating QED & experimental bounds Low-energy LV QED

Experimental bounds
CPT -even parameters are fully measured only for the electron.

Coefficient Sensitivity

cµν 10−14 ÷ 10−17

dµν 10−16 ÷ 10−25

Hµν 10−26 GeV

Coefficient Sensitivity

κ̃e+, κ̃o− 10−32

k̃µν 10−17 ÷ 10−13

Upper bounds for some coefficients of SME [Kostelecký, Russell, arxiv:0801.0287].

Measurements on vacuum birefringence ⇒ κ̃e+, κ̃o− neglegible;

Electron: bounds on dµν are at least a few orders of magnitude
stronger than those on cµν ;

Main contribution from the photon parameter κ̃XYo+ ≤ 10−13;

d`QED .
√

10−26 + 5 · 10−39(x̂GeV)2 ∼ 10−13.

For x̂ ≤ 1/me the H-contribution is neglegible;
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Lorentz-violating QED & experimental bounds QED-subsector of High-energy LV Standard Model

Higher derivatives

LV operators of dimension higher than 4 can be added to the Lagrangian;
they are renormalizable by weighted power-counting [Anselmi, Halat ’07].

L0 = −1

4
F 2, dL = −δ2

4
(F ij)2 − τ1

4Λ2
L

(∂kF
ij)2 − τ0

4Λ4
L

(∂k∂lF
ij)2,

These theories naturally choose a preferred reference frame ⇒ no
minimization over coordinate reparametrizations.

d`2 =
3

2
δ22−24

δ2τ1
x̂2Λ2

L

+480
δ2τ0
x̂4Λ4

L

+384
τ21
x̂4Λ4

L

−3840
τ1τ0
x̂6Λ6

L

+505920
τ20
x̂8Λ8

L

.

Present limits: τ0/Λ
4
L ≤ 10−24GeV−4, τ1/Λ

2
L ≤ 10−21GeV−2.

d`2 ≤ 6×10−28(1+10−6q2+10−8q4+10−14q6+10−15q8), q = (x̂GeV)−1.

dL is small up to E ∼ ΛL & 106 GeV, where d`2 . 5× 105.
d` is of order 1 at E ∼ ΛL/6.
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Conclusions

Conclusions

We defined a distance in the parameter space of quantum field
theories in a RG-invariant way, and studied its properties.

The distance has some unpleasant features, such as dependencies on
unphysical parameters, which can be eliminated either with a
minimization, or fixing some prescription.

When used to quantify the amount of violation of a symmetry, the
distance collects all the parameters of the violation in a single
quantity that vanishes when the symmetry is restored.

We calculated the distance from the Lorentz surface in the LV
extensions of QED, and found that when higher derivatives are
included, they may lower the scale at which the effects of the Lorentz
violation become important.
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