

Carla Distefano for the ANTARES Collaboration INFN-LNS PLANCK 2011

Carla Distefano

Absorption lenght of protons and gammas in the Universe

Neutrinos can probe the far and violent Universe

Hadronic HE ν and γ production

p + p (SNR,X-Ray Binaries) \rightarrow X, π

p + γ (AGN, GRB, μ QSO) $\rightarrow N\pi$

Decay of pions

neutral pions \rightarrow HE gammas charged pions \rightarrow HE neutrinos

Spectrum $dN_{p,e}/dE \propto E^{-2}$

Underwater Cherenkov HE neutrino detectors

Background sources

Optical background in sea water

*⁴⁰K decay (salt in sea water) baseline of ~ 30 kHz in 10" PMT
bioluminescence (bacteria) baseline ~ 40 kHz + bursts from macro-organisms few MHz
Bioluminescence is strongly dependent on the local sea current

What is ANTARES

The largest neutrino telescope in the Northern Hemisphere (Toulon, France), with 0.1 km² footprint

The first neutrino telescope under the sea

A high-depth real-time platform for multidisciplinary observations

A major step toward the km3 detector in the Mediterranean Sea

INFN LNS

Who is in ANTARES

7 countries 27 institutes 150 scientists+engineers

NIKHEF, Amsterdam KVI Groningen NIOZ Texel

University of Erlangen

IFIC, Valencia UPV, Valencia CPPM, Marseille DSM/IRFU/CEA, Saclay APC, Paris LPC, Clermont-Ferrand IPHC (IReS), Strasbourg Univ. de H.-A., Mulhouse IFREMER, Toulon/Brest C.O.M. Marseille LAM, Marseille GeoAzur Villefranche

University/INFN of Bari University/INFN of Bologna University/INFN of Catania LNS – Catania University/INFN of Pisa University/INFN of Rome University/INFN of Genova

ISS, Bucarest

ITEP, Moscow

ANTARES and the international context

Antares The largest operating neutrino telescope in the Northern hemisphere

ANTARES, NEMO, NESTOR

joined efforts to prepare a km3-size neutrino telescope in the Mediterranean Sea: KM3NeT

ANTARES: the detector

The ANTARES Storey

Hydrophone: acoustic positioning

Carla Distefano

Atmospheric muons

- Agreement between simulations and data is satisfactory
- Details of apparatus geometry and performance well understood
- Main sources of simulation uncertainty are:
- optical module response
- absorption length of light in water

INEN LNS

Astr. Phys. 34 (2010) 179-184, Astr. Phys. 33 (2010) 86-89

Depth [m water equivalent]

Diffuse v_{μ} flux

Background rejection:

- Atmospheric muons: cuts on the measured zenith angle, track reconstruction quality parameter and number of hits. Selection based on Monte Carlo.
- Atmospheric neutrinos: cuts on the R parameter related to the neutrino energy. Cut optimization based on Monte Carlo where the Model Rejection Factor method was applied (APP 19 (2003)393)

 R_i = number of hits on i-th PMT

 $R = \Sigma R_i$ / number of all PMTs contributing to the event

Search for point sources

Definition of a list of 24 potential sources (stringent cuts to reduce background) Analysis optimization based on simulations

INFN LNS

Multi-messengers astronomy with ANTARES

GCN (Gamma-ray bursts Coordinates Network)

GRB alerts from satellites (Fermi, Swift...). Connection with GCN

- Search for coincident neutrinos within time window (~100 s) from defined directions → background strongly reduced.
- On-line special trigger implemented.

Dark Matter Search

1

WIMPs gravitational trapped via elastic collisions in the Sun

 $\Phi_{\nu_{\mu}+\nu_{\mu}}$ from the Sun

No excess observed (90% C.L. limits) à la Feldman-Cousins

INFN LNS

5 lines, 68 days

12 lines, 5 years extrapolated

Conclusions and Outlook

ANTARES detector completed in May 2008 Detector operation and calibration under control Maintenance capability demonstrated

Exciting physics program ahead

Over a thousand neutrino already reconstructed Unexplored regions of sensitivity astronomical sources, dark matter, oscillations,

Multi-messenger approach strongly encouraged

Real-time readout and in-situ power capabilities facilitates

a large program of synergetic multi-disciplinary activities: acoustics, biology, oceanography, seismology.....

A multidisciplinary deep-sea research infrastructure

A Major step towards the KM3NeT

INFN LNS

Carla Distefano

Neutrino Events

Calibration: detector acoustic positioning

Calibration: timing and PMT resolution

