A weakly constrained W' at the early LHC

Ennio Salvioni

CERN / University of Padua

Planck 2011 IST, Lisbon, June 1st, 2011

based on C.Grojean, ES, R.Torre, arXiv:1103.2761

Introduction: effective approach

- $W' \leftrightarrow \text{spin-1}$, color-singlet, unit electric charge state
- Require linear and renormalizable coupling to SM fields: only 3 irreducible reprs. $(SU(3)_c, SU(2)_L)_Y$: Del Aguila, De Blas,

most commonly encountered in the literature, e.g.

- (1,1)₁: LR models, Little Higgs w/ custodial symmetry
- (1,3)₀: some Little Higgs models, extra dimensions

we discuss the $(1,1)_1$ case (iso-singlet W')

no coupling to quarks, only to leptons (invariance under $U(1)_{\gamma}$)

Perez-Victoria, 1005.3998

production at hadron colliders strongly suppressed

Iso-singlet *W*': motivations

- If the W is part of an $SU(2)_L$ triplet, W and Z are degenerate in mass
 - strong bounds on Z' from EWPT (and Tevatron/LHC) also apply to W'
 - needs to be heavy, or weakly coupled
- For the (1,1)₁ instead, can write effective theory for W' only, without a Z' constraints are weaker
- If RH neutrinos are absent, or heavier than W, then dominant decays are only hadronic: $W' \to jj, tb$ a study of this 'pessimistic' scenario was missing (for recent studies of the case $M_N < M_{W'}$, see e.g. Schmaltz, Spethmann 1011.5918; Nemevsek *et al.*, 1103.1627)

Effective Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{V} + \mathcal{L}_{V-SM}$$

$$\mathcal{L}_{V} = D_{\mu}V_{\nu}^{-}D^{\nu}V^{+\mu} - D_{\mu}V_{\nu}^{-}D^{\mu}V^{+\nu} + \tilde{M}^{2}V^{+\mu}V_{\mu}^{-}$$

$$+ \frac{g_{4}^{2}}{2}|H|^{2}V^{+\mu}V_{\mu}^{-} - ig'c_{B}B^{\mu\nu}V_{\mu}^{+}V_{\nu}^{-},$$

$$\mathcal{L}_{V-SM} = V^{+\mu}\left(ig_{H}H^{\dagger}(D_{\mu}\tilde{H}) + \frac{g_{q}}{\sqrt{2}}(V_{R})_{ij}\overline{u_{R}^{i}}\gamma_{\mu}d_{R}^{j}\right) + \text{h.c.}$$

- no RH neutrinos (\leftrightarrow heavier than W'); mass eigenst. basis for fermions
- ullet parameters: W' mass + couplings $g_q,\,g_H,\,c_B$ (g_4 irrelevant to us)
 - + RH quark mixing matrix V_R , which does **not** need to be unitary
- g_H induces W-W' mixing introduce mass eigenstates

$$\begin{pmatrix} W^+ \\ W'^+ \end{pmatrix} = \begin{pmatrix} c_{\hat{\theta}} & s_{\hat{\theta}} \\ -s_{\hat{\theta}} & c_{\hat{\theta}} \end{pmatrix} \begin{pmatrix} \hat{W}^+ \\ V^+ \end{pmatrix} \qquad \qquad \Delta^2 = \frac{g_H g v^2}{2\sqrt{2}} \\ m_{\hat{W}}^2 = g^2 v^2/4 \\ \text{W-W' mixing angle} \qquad \hat{\theta} \approx \frac{\Delta^2}{m_{\hat{\tau}\hat{\tau}}^2 - M^2} \qquad \qquad M^2 = \tilde{M}^2 + g_4^2 v^2/4$$

Couplings of W' to SM fields: summary

In mass eigenstate basis for both fermions and vectors, *W'* couples to:

RH quark currents (+ $O(\hat{\theta})$ coupling to LH quark currents):

• $W\gamma$, WZ, Wh, LH lepton currents, all proportional to $\hat{\theta}$:

Bounds and early LHC pheno: outline

■ Dijet final state: $W' \rightarrow jj$

 \blacksquare Diboson final state: $W' \to W \gamma$ as a probe of the compositeness of the W'

'Early LHC'
$$\leftarrow$$
 7 – 8 TeV, L < 5 fb⁻¹

Early LHC reach: dijet

- Strongest indirect bound on g_q comes from $\mathit{K_L}\text{-}\mathit{K_S}$ mixing. Bound depends heavily on assumed form for V_R choose $|V_R|=\mathbf{1}_3$, which gives the weakest constraint (also automatically satisfies bounds from $B_{d,s}^0-\overline{B}_{d,s}^0$).
- Tevatron bounds: in **red** from jj channel, in **blue** from tb
- Early LHC reach: discovery possible starting with around 100 pb⁻¹, sensitive first to $M_{W'} > 900$ GeV. Exclusion: with 1 fb⁻¹, LHC does better than Tevatron for all masses $M_{W'} > 300$ GeV.

$W' o W \gamma$ decay

$$\Gamma(W' \to W\gamma) = \frac{e^2}{96\pi} (c_B + 1)^2 \hat{\theta}^2 \frac{M_{W'}^2}{M_W^2} M_{W'}$$

$$W' o W \gamma$$
 is controlled by $|c_B + 1| \hat{ heta}$!

What are the bounds on these 2 parameters?

$$W' o W\gamma$$
 decay $\Gamma(W' o W\gamma)=rac{e^2}{96\pi}(c_B+1)^2\hat{ heta}^2rac{M_{W'}^2}{M_W^2}M_{W'}$ $W' o W\gamma$ is controlled by $|c_B+1|\hat{ heta}$!

What are the bounds on these 2 parameters?

 c_B is not significantly constrained by current data.

From a theory point of view, what to expect for c_B in extensions of the SM?

General result: gyromagnetic ratio of any elementary particle of mass M (of any spin) coupled to photon must be g = 2 at tree level, if perturbative unitarity holds up to energies $E\gg M/e$. Ferrara, Porrati, Telegdi, PRD 46 (1992)

So if W' is an elementary gauge boson, expect $g\approx 2\Rightarrow c_B\approx -1$ $W'\to W\gamma$ extremely suppressed, and likely out of the LHC reach.

But if W' is composite, $c_B \neq -1$ can happen! Only need to check that cutoff is sufficiently larger than W' mass: from $BB \rightarrow VV$ scattering, find

$$\Lambda \geq 5M$$
 for $c_B \leq 10$.

So we can safely study the phenomenology of the W' for $c_B \leq 10$, without encountering problems with perturbative unitarity.

Bounds on $\hat{\theta}$

• W-W' mixing \longrightarrow contribution to T

$$\hat{T}_V = -\frac{\Delta^4}{M^2 m_{\hat{W}}^2}$$

Lower bound on m_h from LEP2

Del Aguila, De Blas, Perez-Victoria, 1005.3998

or equivalently

$$|\hat{\theta}| < 1 \times 10^{-3}, \qquad M_{W'} = 800 \,\text{GeV}$$

 $|\hat{\theta}| < 5 \times 10^{-4}, \qquad M_{W'} = 2 \,\text{TeV}$

■ $u \rightarrow d$,s semileptonic transitions: e.g., $0^+ \rightarrow 0^+$ β decays, $\pi \rightarrow ev$, $K \rightarrow \pi lv$, etc. Find:

Buras, Gemmler, Isidori, 1007.1993; Langacker, Sankar, PRD 40 (1989)

$$-1.6\times 10^{-3} < g_q \hat{\theta} V_R^{ud} < 1.7\times 10^{-3} \qquad \text{small CP phases in } V_R$$

$$\sqrt{\sum_j |V_R^{uj}|^2} \times |g_q \hat{\theta}| < 10^{-2 \div -1} \qquad \text{maximal CP phases}$$

$W' o W \gamma$: early LHC analysis

- Benchmark point: $M_{W'} = 800 \, \mathrm{GeV}, \ g_q = 0.84g$ (max. coupling allowed by Tevatron)
- Select leptonic *W* decay. Cuts: $p_T^{\gamma} > 250 \, \mathrm{GeV}, \, p_T^e > 50 \, \mathrm{GeV}, \, E_T > 50 \, \mathrm{GeV},$ $|\eta_{e,\gamma}| < 2.5 \, , |M(W\gamma) M_{W'}| < 0.05 \, M_{W'}$
- lacktriangle Background considered is irreducible $W\gamma$
 - W+j with jet misID as photon can be efficiently suppressed (however, also reduction of signal to ~ 80%, not included here) **ATLAS**, **0901.0512**
 - \bullet other instrumental backgrounds (such as eeE_T with $e \to \gamma$, QCD faking $e+E_T$) are not included.

red = signal

solid blue = background

$W' o W \gamma$: discovery prospects

- Shaded region is excluded by D0 WZ search D0, 1011.6278
- Discovery possible for $|c_B+1|>2\div 3$ and $\mathrm{few}\times 10^{-3}<\hat{\theta}<10^{-2}$ with 5 fb⁻¹ at 7 TeV.
- Such values of the mixing angle are disfavored by T, but allowed by semi-leptonic transitions if CP phases in V_R are not negligible.
- Observation of $W' o W\gamma$ would be a hint of the compositeness of the W'

Backup

Indirect bounds on g_q

Main constraints come from $\Delta F = 2$ processes, in particular $K_l - K_S$ mixing:

amplitude $\propto m_i m_j$ strongest limits are on c and t exchange,

i.e. on the combinations

$$|V_R^{cs,ts}||V_R^{cd,td}|$$

4 special forms are very weakly constrained:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

We choose $|V_R|=\mathbf{1}_3$, for which the bound is Langacker, Sankar, PRD 40 (1989)

$$M_{W'} > (g_q/g) 300 \,\text{GeV}$$

(90% CL, and avoiding extreme fine tuning).

This form also automatically satisfies constraints from $B_{d.s}^0 - \overline{B}_{d.s}^0$ mixing.

Bounds on g_q from Tevatron

Relevant channels:

- *jj*

CDF, 1.13 fb⁻¹ CDF, 0812.4036

- *tb*

CDF, 1.9 fb⁻¹ / D0, 2.3 fb⁻¹

CDF, 0902.3276 D0, 1101.0806

assume $\hat{\theta}=0$ (if mixing non-negligible, bounds get only slightly relaxed)

- For $M_{W'}$ > 800 GeV, observe deviations from NWA: **threshold effect**, off-shell part of cross section is relevant when $M_{W'}^2/s$ is large.
- $^{\bullet}$ $\Gamma_{W'}$ has to be smaller than dijet mass resolution (~10% of mass at CDF) consider couplings $\,g_q \leq 2g\,$. For larger values, resonance width would be additional parameter.

Bounds on c_B from TGC

Assuming C and P conservation ($V_0=\gamma,Z$)

$$\mathcal{L}_{\text{eff}}^{WWV_0} = ig_{WWV_0} \left[g_1^{V_0} V_0^{\mu} (W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu}) + k_{V_0} W_{\mu}^+ W_{\nu}^- V_0^{\mu\nu} + \frac{\lambda_{V_0}}{m_W^2} V_0^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^- \right]$$

 $SU(2)_L \times U(1)_Y$ gauge invariance 3 independent parameters:

$$g_1^Z - 1 = -\sin^2 \hat{\theta} (1 + \tan^2 \theta_w)$$
$$k_{\gamma} - 1 = -\sin^2 \hat{\theta} (1 + c_B)$$
$$\lambda_{\gamma} = 0$$

Combine LEP2 measurement of TGC and bounds on $\hat{\theta}$ discussed previously

constrain c_B

However, $\hat{\theta}$ must be very small, so in practice c_B is **only constrained very weakly**. For example:

$$|\hat{\theta}| \sim 10^{-1} \qquad -11 < c_B < 20$$

(very large compared to bounds!)

Gyromagnetic ratio of the W'

$$\mathcal{L}^{W'W'\gamma} = ie \left[A^{\mu} (W'_{\mu\nu} W'^{+\nu} - W'_{\mu\nu} W'^{-\nu}) + k'_{\gamma} W'_{\mu} W'^{+\nu} - F^{\mu\nu} \right]$$
$$k'_{\gamma} = 1 - \cos^2 \hat{\theta} (1 + c_B)$$

Magnetic dipole moment of the W: $\mu_{W'} = \frac{e}{2M_{W'}} (1 + k_\gamma')$ $g_{W'}$

So find

$$g_{W'} = 2 - \cos^2 \hat{\theta} \left(1 + c_B \right)$$

If the W is a fundamental gauge boson then $g_{W'}=2$ at tree level

gyromagnetic ratio

W' o WZ at the early LHC

- Select leptonic W and hadronic Z e+MET+jj final state, better than purely leptonic one for limited luminosity Alves et al., 0907.2915
- BR into WZ depends only on $\hat{\theta}$ measuring rate of WZ would give an estimate of the mixing angle.
- As for $W\gamma$, discovery at early LHC is possible for values of $\hat{\theta}$ disfavored by EWPT (T parameter), but allowed by $u \to d, s$ semileptonic processes, if CP phases in V_R are not negligible.

Comparison of $W\gamma$ and WZ

$$M_{W'} = 1.2 \,\mathrm{TeV}$$

