Forward-Backward $t \bar{t}$ Asymmetry from Anomalous Stop Pair Production

based on
G. Isidori & J.F.K., 1103.0016

Jernej F. Kamenik

Institut “Jožef Stefan”

01/06/2011, Lisbon
Forward-backward asymmetry in $t\bar{t}$ production

- Charge (a)symmetric cross-section

\[\sigma_F \equiv \int_0^1 \frac{d\sigma}{d \cos \theta} d \cos \theta, \quad \sigma_B \equiv \int_{-1}^0 \frac{d\sigma}{d \cos \theta} d \cos \theta. \]

\[A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \]

$\Delta y = y_t - y_{\bar{t}}$
Forward-backward asymmetry in $t\bar{t}$ production

- Non-zero A_{FB} requires u- or t-odd contributions to σ_+

$$\hat{t} = m_t^2 - \frac{s}{2} [1 - \beta_t \cos \theta]$$

$$\beta_t = \sqrt{1 - \frac{4m_t^2}{s}}$$

$$\hat{t} = (p_q - p_t)^2$$

$$\hat{s} = (p_t + p_{\bar{t}})^2$$

- In QCD induced at order α_s^3

$$A_{FB}^{SM} = 0.058 \pm 0.009$$

Almeida et al., 0805.1885
Forward-backward asymmetry in $t\bar{t}$ production

- Measurements at the Tevatron vs. SM (QCD) predictions

\[
\begin{align*}
\sigma &= (7.50 \pm 0.48) \text{ pb} \\
A_{FB} &= 0.158 \pm 0.074
\end{align*}
\]
Forward-backward asymmetry in $t\bar{t}$ production

- Measurements at the Tevatron vs. SM (QCD) predictions

\[A_{FB} = 0.158 \pm 0.074 \]

\[\sigma = (7.50 \pm 0.48) \text{ pb} \]

CDF, 0903.2850

Schwanenberger [CDF], 1012.2319

Ahrens et al., 1003.5827

Kidonakis, 1009.4935, 1105.3481
Forward-backward asymmetry in $t\bar{t}$ production

- Measurements at the Tevatron vs. SM (QCD) predictions

\[\sigma = (7.50 \pm 0.48) \text{ pb} \quad \quad A_{FB} = 0.158 \pm 0.074 \]

- High m_{tt} region less sensitive to threshold effects

\[m_{t\bar{t}} = \sqrt{s} = \sqrt{(p_t + p_{\bar{t}})^2} \]
Forward-backward asymmetry in $t\bar{t}$ production

- Measurements at the Tevatron vs. SM (QCD) predictions

\[
\begin{align*}
\sigma &= (7.50 \pm 0.48) \text{ pb} \\
\sigma^h &= (80 \pm 37) \text{ fb} \\
A_{FB} &= 0.158 \pm 0.074 \\
A_{FB}^h &= 0.475 \pm 0.114 \\
\sigma^h &= \sigma(700\text{GeV} < m_{t\bar{t}} < 800\text{GeV}) \\
A_{FB}^h &= A_{FB}(m_{t\bar{t}} > 450\text{GeV})
\end{align*}
\]
New Physics Interpretation(s)

• **NP interfering with the SM**

 • positive contributions to A_{FB}

 $$\sigma_B^{NP} < \sigma_F^{NP}$$

 • interference in σ negative or vanishing

 $$\sigma_B^{NP} \lesssim 0$$

\[
A_{FB}^{tot} = \frac{\sigma_F^{SM} - \sigma_B^{SM} + \sigma_F^{NP} - \sigma_B^{NP}}{\sigma_F^{SM} + \sigma_B^{SM} + \sigma_F^{NP} + \sigma_B^{NP}}
\]

Grinstein et al., 1102.3374
New Physics Interpretation(s)

• **NP interfering with the SM**

 • positive contributions to A_{FB}
 $$\sigma_B^{NP} < \sigma_F^{NP}$$

 • interference in σ negative or vanishing
 $$\sigma_B^{NP} \lesssim 0$$

 concrete models rarely satisfy this!

• **NP not interfering with SM?**

 • saturate uncertainties in σ

 • need very asymmetric incoherent contribution

\[
A_{FB}^{tot} = \frac{\sigma_F^{SM} - \sigma_B^{SM} + \sigma_F^{NP} - \sigma_B^{NP}}{\sigma_F^{SM} + \sigma_B^{SM} + \sigma_F^{NP} + \sigma_B^{NP}}
\]
tt production from top partner decays

- Inclusive σ measurements allow for 13% new incoherent contribution

- Large asymmetric contribution can reconcile the inclusive A_{FB} measurement
 - Needs to overcome symmetric QCD production

- Production of “top partners” decaying to top + invisible particles
 - Need to pass $t\bar{t}$ selection criteria and escape searches for $t\bar{t}+E_{\text{miss}}$
$t\bar{t}$ production from top partner decays

- Fermionic top partners (4th gen, vectorlike T)
 - Large (symmetric) QCD cross-section
 - Excludes masses $m_T \sim m_t$

![Graph showing exclusion limits and production cross-sections](image-url)
tt̄ production from top partner decays

- Fermionic top partners (4th gen, vectorlike T)

- Scalar top partner - “stop” (SUSY)

- QCD production mostly p-wave, vanishes at threshold!

- Low mass region still allowed with sizable cross-section

 - decay to $t + \chi^0$

 - $m_{t̄} \sim 190\text{GeV}$, $m_\chi \sim O(\text{GeV})$

 Could easily pass top reconstruction
tt̄ production from top partner decays

- Fermionic top partners (4th gen, vectorlike T) ✗
- Scalar top partner - “stop” (SUSY) ✓
- QCD production mostly p-wave, vanishes at threshold!
- Low mass region still allowed with sizable cross-section
 - decay to $t + \chi^0$
 - $m_t \sim 190\text{GeV}$, $m_\chi \sim O(\text{GeV})$
 - Could easily pass top reconstruction

Beenakker et al., 1006.4771

CDF Public Note 10374

[Graph showing exclusion limits on m_T vs m_χ.]
tt̄ production from stop decays

- Asymmetric production mechanism

- Exchange of heavier states \(\Rightarrow\) Higher dim effective operators

\[
\bar{u}u \bar{t}^\dagger \bar{t}, \quad \bar{u} \gamma_5 u \bar{t}^\dagger \bar{t}, \quad \bar{u} \gamma_\mu u \bar{t}^\dagger \partial^\mu \bar{t}, \quad \bar{u} \gamma_\mu \gamma_5 u \bar{t}^\dagger \partial^\mu \bar{t}.
\]

- Up to dim 6 no asymmetry can be generated

- Exchange of light states in t- or u-channel \(\Rightarrow\) Need light SM singlet: \(\chi^0\)

- Minimal setup:
tt production from stop decays

- Simple(st) model: \[\mathcal{L} = \mathcal{L}_{SM} + (D_\mu \tilde{t})^\dagger (D^\mu \tilde{t}) - m_t^2 \tilde{t}^\dagger \tilde{t} + \tilde{\chi}^0 (i \gamma_\mu D^\mu) \chi^0 - m_\chi \tilde{\chi}_c \chi^0 + \sum_{q=u,c,t} (\tilde{Y}_q \tilde{q}_R \tilde{t} \chi^0 + \text{h.c.}) , \]

- \(\tilde{t} \) can be identified with right-handed stop in MSSM

- Majorana or Dirac nature of \(\chi^0 \) irrelevant for collider phenomenology

- can \(\chi^0 \) be the MSSM bino?
\(\ttbar \) production from stop decays

- Simple(st) model:
 \[
 \mathcal{L} = \mathcal{L}_{SM} + (D_\mu \tilde{t})^\dagger (D^\mu \tilde{t}) - m_{\tilde{t}}^2 \tilde{t}^\dagger \tilde{t} + \tilde{\chi}_0^0 (i \gamma_\mu D^\mu) \chi^0 \\
 - m_\chi \tilde{\chi}_c^0 \chi^0 + \sum_{q=u,c,t} (\tilde{Y}_q \tilde{q}_R \tilde{t} \chi^0 + \text{h.c.}) ,
 \]

- \(\tilde{t} \) can be identified with right-handed stop in MSSM

- Majorana or Dirac nature of \(\chi^0 \) irrelevant for collider phenomenology

- can \(\chi^0 \) be the MSSM bino? No (bino couplings determined by symmetry)

 - singlino in NMSSM or similar
$t\bar{t}$ A_{FB} from anomalous stop production

- Need large $Br(t \rightarrow t \chi^0)$ \Rightarrow Fix $\tilde{Y}_t=4$

- Both σ and A_{FB} can be accommodated
ttbar A_{FB} from anomalous stop production

- Need large $Br(t \to t \chi^0) \Rightarrow \text{Fix } \tilde{Y}_t=4$

 - Both σ and A_{FB} can be accommodated

 - σ^h and A_{FB}^h in some tension

 - Can both be made consistent at 90% C.L.
Collider constraints

- $t\bar{t}$ cross section at the LHC

\[\sigma_{\text{LHC}} = (180 \pm 19) \text{ pb} \]

ATLAS-CONF-2011-040

\[\sigma_{\text{SM}}^{\text{LHC}} = (158 \pm 24) \text{ pb} \]

Campbell & Ellis, 1007.3492

- QCD gg fusion process dominates:

\[\sigma(\tilde{t}\tilde{t}^\dagger)_{\text{LHC}} \simeq 10 \text{ pb} \]

✔

Beenakker et al., 1006.4771
Collider constraints

• $t\bar{t}$ cross section at the LHC

\[
\sigma_{\text{LHC}} = (180 \pm 19) \text{ pb} \\
\sigma_{\text{LHC}} = (158 \pm 24) \text{ pb}
\]

ATLAS-CONF-2011-040

Campbell & Ellis, 1007.3492

• QCD gg fusion process dominates:

\[
\sigma(\tilde{t}\tilde{t})_{\text{LHC}} \simeq 10 \text{ pb}
\]

Beenakker et al., 1006.4771

• SUSY searches at LHC, low mass region (35pb$^{-1}$)

ATLAS, 1102.5290

• ATLAS 2 jets+E_{miss} search: $p_T > 140, 40 \text{ GeV}$ \hspace{1cm} $E_T^{\text{miss}} > 100 \text{ GeV}$

(+ additional selection cuts)

• background uncertainty of 42 events

• less than 1pb of signal pass kinematic cuts
Flavor constraints

- Model interactions consistent with conserved Z_2 symmetry ("R-parity")
 - No FCNCs at tree level

- At one loop contribution to $D\bar{D}$ mixing observables

\[
\mathcal{H}_{\text{eff}} = C_{ud}^R \left(\bar{c}_R \gamma_\mu u_R \right)^2 \\
C_{ud}^R = -\frac{1}{32\pi^2 m_t^2} (\tilde{Y}_c \tilde{Y}_u^*)^2
\]

using G. Isidori, Y. Nir & G. Perez, 1002.0900

\[
\left| \tilde{Y}_c / \tilde{Y}_u \right| < 0.06 ,
\]

Requires sizable flavor hierarchy (comparable to CKM)
Dark Matter Implications

- stable light fermions \(\chi^0 \)
- mass of a few GeV
- annihilating via effective interaction

\[
\mathcal{L}_{\text{annih.}} = \frac{|Y_u|^2}{4m_t^2} \bar{u}_R \gamma_\mu u_R \chi^0 \gamma^\mu (1 - \gamma_5) \chi^0
\]

fixed by \(A_{\text{FB}} \)

If Dirac, correct cosmological DM abundance can be reproduced!
Dark Matter Constraints

- stable light fermions χ^0 as viable DM candidates?

- Tension with direct DM searches?
 (SI nucleon $\sigma \sim 10^{-37}$ cm2)

 See also Hector et al., 1105.5644

- Cosmological (CMB) constraints on annihilation of light thermal relics

 Huetsi et al., 1103.2766

 - for masses below 5 GeV, in conflict with thermal annihilation
Dark Matter Constraints

• stable light fermions χ^0 as viable DM candidates?

 • Alternative possibilities if χ^0 Majorana

 • thermal annihilation cross-section velocity suppressed

 • nucleon cross-section spin-dependent

 • DM needs to be produced non-thermally (i.e. asymmetric DM)

D. E. Kaplan et al., 0901.4117
Prospects for LHC discovery

• Generic SUSY searches in 2 jets + E_{miss}, sensitive to low squark masses

 • Benefits of lower luminosity (trigger menu)!

 Best LHC sensitivity expected this year

• Can a scalar admixture be disentangled from top properties measurements?

 • Top Mass, Width measurements?

 • Spin (correlation) measurements?

 • QCD produced top quarks not polarized, $t\bar{t}$ spins correlated

 ATLAS, 1102.5290
 CMS, 1101.1628

 Mahlon & Parke, 1001.3422
 Godbole et al., 1010.1458
 Jung et al., 1011.5976
 Degrande et al., 1010.6304
Conclusions

- The most significant hints of BSM physics at the Tevatron in top sector
 - Large measured A_{FB} could be due to O(few TeV) (s-channel) resonances or sub TeV contributions in u- or t-channel

 c.f. J.F.K @ FPCP 2011

- Even incoherent contributions to $\sigma(t\bar{t})$ still consistent with present data

 - Example: light stop + neutralino

 predicted LHC signatures in jets+E_{miss}

 possible implications for DM searches
 (or even CDF Wjj anomaly)

 not vanilla SUSY

Hector et al.,1105.5644
G. Punzi @ Recontres de Blois 2011