Supersymmetric Left-Right models and low energy phenomenology

Avelino Vicente Universität Würzburg

Based on work in collaboration with J. Esteves, M. Hirsch, W. Porod, J. Romão and F. Staub JHEP 1012 (2010) 077 [arXiv:1011.0348]

> Planck 2011 June 1, 2011

Avelino Vicente - SUSY LR models and low energy phenomenology

Planck 2011 - 1 / 18

Introduction

Motivation

• Left vs Right

The model

Lepton Flavor Violation in SUSY Left-Right models

Summary and conclusions

Introduction

• The Standard Model needs to be extended to include neutrino masses

- The Standard Model needs to be **extended to include neutrino masses**
- The extension must account for the **smallness of neutrino masses**

 \rightarrow Seesaw mechanism

- The Standard Model needs to be **extended to include neutrino masses**
- The extension must account for the **smallness of neutrino masses**

 \rightarrow Seesaw mechanism

• And lead to **new predictions**!

 \rightarrow Seesaw: Indirect tests

- The Standard Model needs to be **extended to include neutrino masses**
- The extension must account for the **smallness of neutrino masses**

 \rightarrow Seesaw mechanism

• And lead to **new predictions**!

 \rightarrow Seesaw: Indirect tests

But let us keep in mind that ...

In addition to neutrino masses, the Standard Model has some open theoretical questions that need to be addressed. The most popular solution to these problems is **Supersymmetry**.

 \rightarrow R-parity...conservation?

R-parity is usually introduced **by hand**, without any theoretical argument supporting it.

Idea: R-parity is the remnant subgroup after the breaking of a continuous $U(1)_{B-L}$ gauge symmetry

R-parity is usually introduced **by hand**, without any theoretical argument supporting it.

Idea: R-parity is the remnant subgroup after the breaking of a continuous $U(1)_{B-L}$ gauge symmetry

• Left-Right symmetry : ${
m SU(3)}_{
m c} imes {
m SU(2)}_{
m L} imes {
m SU(2)}_{
m R} imes {
m U(1)}_{
m B-L}$

- ★ Restoration of parity at high energies
- \star Natural framework for the seesaw mechanism \rightarrow neutrino masses
- * Provides technical solutions to SUSY and strong CP problems
- \star Gives an understanding for the U(1) charges
- \star Can be easily embedded in $SO(10)~{\rm GUTs}$

Basic setup

In SUSY models, **Lepton flavor violation** is a good **indirect test** of physics at high energies.

- Flavor diagonal soft terms at the GUT scale
 - * mSUGRA boundary conditions : $m_L^2 = m_E^2 = m_0^2 \mathcal{I}_3$
- RGE running from GUT to SUSY/EW scale
 - * Leptons couple to heavy fields with flavor violating couplings
 - * RGE running induces LFV
 - \star Off-diagonal entries in m_L^2 and m_E^2 at the SUSY/EW scale
 - ★ Lepton flavor violating signatures
- After the heavy fields decouple no more LFV is induced
 - ★ Indirect hint of the intermediate scales

Left vs Right

In minimal seesaw models LFV is generated **only for the left-handed sleptons**.

- ★ **Example:** Type-I seesaw. e^c only couples through the flavor diagonal charged lepton Yukawa Y_e .
- * No chances to observe LFV in the **right slepton sector**.

However, in a LR extended version of the seesaw, $L^c = (e^c, \nu^c)$ couples exactly like the left-handed doublet $L = (\nu, e)$.

Avelino Vicente - SUSY LR models and low energy phenomenology

Introduction

The model

• How to break the LR symmetry

Lepton Flavor Violation in SUSY Left-Right models

Summary and conclusions

The model

Avelino Vicente - SUSY LR models and low energy phenomenology

How to break the LR symmetry

$$egin{aligned} \mathbf{SU(3)_c} imes \mathbf{SU(2)_L} imes \mathbf{SU(2)_R} imes \mathbf{U(1)_{B-L}} \ & \downarrow \ & \mathbf{SU(3)_c} imes \mathbf{SU(2)_L} imes \mathbf{U(1)_Y} \end{aligned}$$

Requirements:

- Automatic conservation of R-parity
- Seesaw mechanism
- Parity conservation at high energies
- Cancellation of anomalies

Omega LR

Besides the usual MSSM representations:

	$SU(3)_c$	$SU(2)_L$	$SU(2)_R$	$U(1)_{B-}$	L
Δ	1	3	1	2	
Δ^c	1	1	3	-2	$\Rightarrow f L^c \Delta^c L^c$
$\bar{\Delta}$	1	3	1	-2	\Downarrow
$\bar{\Delta}^c$	1	1	3	2	${ m f}{ m v}_{ m BL} u^{ m c} u^{ m c}$
Ω	1	3	1	0	RH neutrinos mass
Ω^c	1	1	3	0	Seesaw mechanism

The B - L = 0 triplets have important contributions to the **tree-level scalar potential**, allowing for **R-parity conservation**, without the necessity of higher order corrections (Kuchimanchi, Mohapatra, 1993 and Babu, Mohapatra, 2008).

Symmetry breaking

 $\mathbf{SU}(2)_{\mathbf{R}} imes \mathbf{U}(1)_{\mathbf{B}-\mathbf{L}}$

 $\mathbf{U}(1)_{\mathbf{R}}\times \mathbf{U}(1)_{\mathbf{B}-\mathbf{L}}$

 \downarrow

 $U(1)_{\mathbf{Y}}$

 $\langle \Delta^c \rangle = \langle \bar{\Delta}^c \rangle = \frac{v_{BL}}{\sqrt{2}}$

Seesaw scale

Avelino Vicente - SUSY LR models and low energy phenomenology

Planck 2011 - 10 / 18

Introduction

The model

Lepton Flavor Violation in SUSY Left-Right models

• Left vs Right

• $\mu^+ \rightarrow e^+ \gamma$: Positron polarization asymmetry

• Other signatures

Summary and conclusions

Lepton Flavor Violation in SUSY Left-Right models

Left vs Right

SPS3 benchmark point

 Y_{ν} fit $M_S=10^{13}~{\rm GeV}$, $v_R\in [10^{15},5\cdot 10^{15}]~{\rm GeV}$

- There are regions of parameter space with observable rates for LFV in the right-handed slepton sector
- Closer $v_{BL} v_R$ implies closer $Br(\tilde{\tau}_L) Br(\tilde{\tau}_R)$
- Is it possible to determine the ratio v_{BL}/v_R ?

SPS3 benchmark point

Left vs Right

 $Y_{\nu} \mbox{ fit } M_S = 10^{13} \mbox{ GeV}, v_{BL} \in [10^{14}, 10^{15}] \mbox{ GeV}, v_R \in [10^{15}, 10^{16}] \mbox{ GeV}$

- By measuring left- and right-handed LFV the ratio v_{BL}/v_R can be constrained
- However, there is a slight dependence on M_{S} and m_{GUT}
- More information (e.g. other LFV decays) is required

$\mu^+ \to e^+ \gamma$: Positron polarization asymmetry

$$\mathcal{L}_{eff} = e \frac{m_i}{2} \bar{l}_i \sigma_{\mu\nu} F^{\mu\nu} (A_L^{ij} P_L + A_R^{ij} P_R) l_j + h.c.$$

Positron polarization asymmetry

$$\mathcal{A}(\mu^+ \to e^+ \gamma) = \frac{|A_L|^2 - |A_R|^2}{|A_L|^2 + |A_R|^2}$$

SPS3 benchmark point, Y_{ν} fit, $v_{BL} = 10^{14}$ GeV

- In minimal seesaw models $\mathcal{A}\simeq 1$ is expected
- In this case large departures from $\mathcal{A}=1$ can be found
- This observable is very sensitive to the high energy scales

SPS3 benchmark point

Left vs Right

 $Y_{\nu} \mbox{ fit } M_S = 10^{13} \mbox{ GeV}, v_{BL} \in [10^{14}, 10^{15}] \mbox{ GeV}, v_R \in [10^{15}, 10^{16}] \mbox{ GeV}$

- The polarization asymmetry is strongly dependent on the ratio v_{BL}/v_R
- Again, there is a slight dependence on M_{S} and m_{GUT}

Other things to look at:

- Impact on the SUSY spectrum
 - ★ Main changes from the standard expectation
 - ★ Invariant sparticle mass combinations
- Dark matter relic density
- Other low-energy lepton flavor violating processes $(\mu \rightarrow 3e \dots)$
- CP Violation and flavor physics

Introduction

The model

Lepton Flavor Violation in SUSY Left-Right models

Summary and conclusions

Summary and conclusions

Avelino Vicente - SUSY LR models and low energy phenomenology

Summary

- * SUSY Left-Right models are well motivated extensions of the MSSM, with automatic R-parity conservation and seesaw mechanism.
- Assuming flavor blind soft terms at the GUT scale, lepton flavor violating entries are generated at the SUSY scale due to RGE running. This makes LFV a window to the high energy scales.
- * Contrary to minimal seesaw implementations, there are regions of parameter space where LFV is also observable in the R sector. Such observation would clearly point to an underlying Left-Right symmetry.
- * In addition, by comparing LFV in L and R sectors one can constrain the ratio v_{BL}/v_R , providing valuable information about the symmetry breaking pattern.
- Many distinctive features not present in the standard mSUGRA scenarios. More observables to study!

Introduction

The model

Lepton Flavor Violation in SUSY Left-Right models

Summary and

conclusions

Backup slides

Backup slides

Avelino Vicente - SUSY LR models and low energy phenomenology

Neutrino data

Parameter	Best fit	2σ	3σ
$\Delta m^2_{21} [10^{-5} {\rm eV}^2]$	$7.59\substack{+0.23 \\ -0.18}$	7.22–8.03	7.02–8.27
$ \Delta m^2_{31} [10^{-3} {\rm eV}^2]$	$2.40^{+0.12}_{-0.11}$	2.18–2.64	2.07–2.75
$\sin^2 \theta_{12}$	$0.318\substack{+0.019\\-0.016}$	0.29–0.36	0.27–0.38
$\sin^2 \theta_{23}$	$0.50\substack{+0.07 \\ -0.06}$	0.39–0.63	0.36–0.67
$\sin^2 heta_{13}$	$0.013\substack{+0.013\\-0.009}$	\leq 0.039	\leq 0.053

Taken from Schwetz et al, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016v3]

- Hierarchy between atmospheric and solar mass scales
- Two large mixing angles
- One small (maybe zero?) mixing angle

CMSSM benchmark points

Point	m_0	$M_{1/2}$	A_0	aneta	$sign(\mu)$
SPS1a'	70 GeV	250 GeV	-300 GeV	10	+
SPS3	90 GeV	400 GeV	0 GeV	10	+
SPS4	400 GeV	300 GeV	0 GeV	50	+
SPS5	150 GeV	300 GeV	-1000 GeV	5	+
SU4	200 GeV	160 GeV	-400 GeV	10	+
Om1	280 GeV	250 GeV	-500 GeV	10	+
LM1	60 GeV	250 GeV	0 GeV	10	+

LR models - Case 1: Doublet models

R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 12, 1502 (1975)

In the first LR models doublets were chosen to break the LR symmetry.

Avelino Vicente - SUSY LR models and low energy phenomenology

LR models - Case 1: Doublet models

R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 12, 1502 (1975)

In the first LR models doublets were chosen to break the LR symmetry.

However ...

- R-parity gets broken unless additional discrete symmetries are imposed by hand
- There is no seesaw mechanism

LR models - Case 2: MSUSYLR

M. Cvetic and J. C. Pati, Phys. Lett. 135, 57 (1984)

The so-called **Minimal SUSY Left-Right** (MSUSYLR) model breaks the LR symmetry with **triplets** instead of doublets.

	$SU(3)_c$	$SU(2)_L$	$SU(2)_R$	$U(1)_{B-L}$
Δ	1	3	1	2
Δ^c	1	1	3	-2
$\bar{\Delta}$	1	3	1	-2
$\bar{\Delta}^c$	1	1	3	2

LR models - Case 2: MSUSYLR

M. Cvetic and J. C. Pati, Phys. Lett. 135, 57 (1984)

The so-called **Minimal SUSY Left-Right** (MSUSYLR) model breaks the LR symmetry with **triplets** instead of doublets.

LR models - Case 2: MSUSYLR

M. Cvetic and J. C. Pati, Phys. Lett. 135, 57 (1984)

The so-called **Minimal SUSY Left-Right** (MSUSYLR) model breaks the LR symmetry with **triplets** instead of doublets.

However ...

• A detailed analysis of the scalar potential shows that **R-parity gets** broken by $\langle \tilde{\nu}^c \rangle \neq 0$. Kuchimanchi, Mohapatra, PRD 48, 4352 (1993).

 \rightarrow This is **controversial** : 1-loop corrections must be taken very seriously.

Omega LR: Superpotential and soft terms

$$\mathcal{W} = Y_Q Q \Phi Q^c + Y_L L \Phi L^c - \frac{\mu}{2} \Phi \Phi + f L \Delta L + f^* L^c \Delta^c L^c + a \Delta \Omega \bar{\Delta} + a^* \Delta^c \Omega^c \bar{\Delta}^c + \alpha \Omega \Phi \Phi + \alpha^* \Omega^c \Phi \Phi + M_\Delta \Delta \bar{\Delta} + M^*_\Delta \Delta^c \bar{\Delta}^c + M_\Omega \Omega \Omega + M^*_\Omega \Omega^c \Omega^c$$

$$\begin{aligned} -\mathcal{L}_{soft} &= m_Q^2 \tilde{Q}^{\dagger} \tilde{Q} + m_{Q^c}^2 \tilde{Q}^{c^{\dagger}} \tilde{Q}^{c} + m_L^2 \tilde{L}^{\dagger} \tilde{L} + m_{L^c}^2 \tilde{L}^{c^{\dagger}} \tilde{L}^c \\ &+ m_{\Delta}^2 \Delta^{\dagger} \Delta + m_{\bar{\Delta}}^2 \bar{\Delta}^{\dagger} \bar{\Delta} + m_{\Delta^c}^2 \Delta^{c^{\dagger}} \Delta^c + m_{\bar{\Delta}c}^2 \bar{\Delta}^{c^{\dagger}} \bar{\Delta}^c \\ &+ m_{\Phi}^2 \Phi^{\dagger} \Phi + m_{\Omega}^2 \Omega^{\dagger} \Omega + m_{\Omega^c}^2 \Omega^{c^{\dagger}} \Omega^c \\ &+ \frac{1}{2} \left[M_1 \tilde{B}^0 \tilde{B}^0 + M_2 (\tilde{W}_L \tilde{W}_L + \tilde{W}_R \tilde{W}_R) + M_3 \tilde{g} \tilde{g} + h.c. \right] \\ &+ \left[T_Q \tilde{Q} \Phi \tilde{Q}^c + T_L \tilde{L} \Phi \tilde{L}^c + T_f \tilde{L} \Delta \tilde{L} + T_f^* \tilde{L}^c \Delta^c \tilde{L}^c + T_a \Delta \Omega \bar{\Delta} \right. \\ &+ T_a^* \Delta^c \Omega^c \bar{\Delta}^c + T_\alpha \Omega \Phi \Phi + T_\alpha^* \Omega^c \Phi \Phi + B_\mu \Phi \Phi \\ &+ \left. B_{M_{\Delta}} \Delta \bar{\Delta} + B_{M_{\Delta}}^* \Delta^c \bar{\Delta}^c + B_{M_{\Omega}} \Omega \Omega + B_{M_{\Omega}}^* \Omega^c \Omega^c + h.c. \right] \end{aligned}$$

A comment on bidoublets

In LR models the MSSM Higgses are introduced as **bidoublets**

$$\Phi = \begin{bmatrix} H_d^0 & H_u^+ \\ H_d^- & H_u^0 \end{bmatrix} \quad : \quad (2,2,0) \text{ under } SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

However, at least **two bidoublets** are needed to produce a non-trivial V_{CKM} at tree-level.

$$Y_Q^{(i)}Q\Phi_iQ^c \Rightarrow$$
 The misalignment $Y_Q^{(1)} - Y_Q^{(2)}$ generates V_{CKM}

At the v_R scale one of these two bidoublets dicouples while the orthogonal combination leads to the MSSM two Higgs doublets. Therefore, the **low-energy Yukawa parameters** are rotations of the original ones. In the leptonic sector:

$$Y_e = Y_L^1 \cos \theta_1 - Y_L^2 \sin \theta_1$$

$$Y_\nu = -Y_L^1 \cos \theta_2 + Y_L^2 \sin \theta_2$$

Renormalization Group Equations

 $\bullet\,$ From the GUT scale to the v_R scale

$$16\pi^{2} \frac{d}{dt}m_{L}^{2} = 6ff^{\dagger}m_{L}^{2} + 12fm_{L}^{2}f^{\dagger} + 6m_{L}^{2}ff^{\dagger} + 12m_{\Delta}^{2}ff^{\dagger} + 2Y_{L}^{(k)}Y_{L}^{(k)} {}^{\dagger}m_{L}^{2} + 2m_{L}^{2}Y_{L}^{(k)}Y_{L}^{(k)} {}^{\dagger} + 4Y_{L}^{(k)}m_{L^{c}}^{2}Y_{L}^{(k)} {}^{\dagger} + 4(m_{\Phi}^{2})_{mn}Y_{L}^{(m)}Y_{L}^{(n)} {}^{\dagger} + 12T_{f}T_{f}^{\dagger} + 4T_{L}^{(k)}T_{L}^{(k)} {}^{\dagger} - (3g_{BL}^{2}|M_{1}|^{2} + 6g_{2}^{2}|M_{2}|^{2} + \frac{3}{2}g_{BL}^{2}S_{1})\mathcal{I}_{3}$$

$$16\pi^{2} \frac{d}{dt} m_{L^{c}}^{2} = 6f^{\dagger} f m_{L^{c}}^{2} + 12f^{\dagger} m_{L^{c}}^{2} f + 6m_{L^{c}}^{2} f^{\dagger} f + 12m_{\Delta^{c}}^{2} f^{\dagger} f$$

$$+ 2Y_{L}^{(k)} {}^{\dagger} Y_{L}^{(k)} m_{L^{c}}^{2} + 2m_{L^{c}}^{2} Y_{L}^{(k)} {}^{\dagger} Y_{L}^{(k)} + 4Y_{L}^{(k)} {}^{\dagger} m_{L}^{2} Y_{L}^{(k)}$$

$$+ 4(m_{\Phi}^{2})_{mn} Y_{L}^{(m)} {}^{\dagger} Y_{L}^{(n)} + 12T_{f}^{\dagger} T_{f} + 4T_{L}^{(k)} {}^{\dagger} T_{L}^{(k)}$$

$$- (3g_{BL}^{2} |M_{1}|^{2} + 6g_{2}^{2} |M_{2}|^{2} - \frac{3}{2}g_{BL}^{2} S_{1})\mathcal{I}_{3}$$

Avelino Vicente - SUSY LR models and low energy phenomenology

Renormalization Group Equations

 $\bullet\,$ From the v_{R} scale to the v_{BL} scale

$$16\pi^{2} \frac{d}{dt}m_{L}^{2} = 2Y_{e}m_{\tilde{e}^{c}}^{2}Y_{e}^{\dagger} + 2m_{H_{d}}^{2}Y_{e}Y_{e}^{\dagger} + 2m_{H_{u}}^{2}Y_{\nu}Y_{\nu}^{\dagger} + m_{L}^{2}Y_{e}Y_{e}^{\dagger}$$
$$+Y_{e}Y_{e}^{\dagger}m_{L}^{2} + m_{L}^{2}Y_{\nu}Y_{\nu}^{\dagger} + Y_{\nu}Y_{\nu}^{\dagger}m_{L}^{2} + 2Y_{\nu}m_{\tilde{\nu}^{c}}^{2}Y_{\nu}^{\dagger}$$
$$+2T_{e}T_{e}^{\dagger} + 2T_{\nu}T_{\nu}^{\dagger} - (3g_{BL}^{2}|M_{1}|^{2} + 6g_{L}^{2}|M_{L}|^{2} + \frac{3}{4}g_{BL}^{2}S_{2})\mathcal{I}_{3}$$

$$16\pi^{2} \frac{d}{dt} m_{\tilde{e}^{c}}^{2} = 2Y_{e}^{\dagger} Y_{e} m_{\tilde{e}^{c}}^{2} + 2m_{\tilde{e}^{c}}^{2} Y_{e}^{\dagger} Y_{e} + 4m_{H_{d}}^{2} Y_{e}^{\dagger} Y_{e} + 4Y_{e}^{\dagger} m_{L}^{2} Y_{e}$$
$$+ 4T_{e}^{\dagger} T_{e} - (3g_{BL}^{2} |M_{1}|^{2} + 2g_{R}^{2} |M_{R}|^{2} - \frac{3}{4}g_{BL}^{2} S_{2} - \frac{1}{2}g_{R}^{2} S_{3})\mathcal{I}_{3}$$

Avelino Vicente - SUSY LR models and low energy phenomenology

RGEs: Approximated expressions

 $\bullet\,$ From the GUT scale to the v_{R} scale

$$\Delta m_L^2 = -\frac{1}{4\pi^2} \left(3ff^{\dagger} + Y_L^{(k)}Y_L^{(k)\dagger} \right) \left(3m_0^2 + A_0^2 \right) \ln\left(\frac{m_{GUT}}{v_R}\right)$$

$$\Delta m_{L^c}^2 = -\frac{1}{4\pi^2} \left(3f^{\dagger}f + Y_L^{(k)\dagger}Y_L^{(k)} \right) \left(3m_0^2 + A_0^2 \right) \ln\left(\frac{m_{GUT}}{v_R}\right)$$

 $\bullet\,$ From the v_{R} scale to the v_{BL} scale

$$\Delta m_L^2 \sim -\frac{1}{8\pi^2} Y_\nu Y_\nu^\dagger \left(3m_L^2 |_{v_R} + A_e^2 |_{v_R} \right) \ln \left(\frac{v_R}{v_{BL}} \right)$$

$$\Delta m_{e^c}^2 \sim 0$$

Basic setup

J. N. Esteves, M. Hirsch, J.C. Romão, W. Porod, F. Staub and A. Vicente JHEP 12, 077 (2010)

- mSUGRA boundary conditions
- 2-loop RGEs
 - * Analytical computation with Sarah

F. Staub, Comput. Phys. Commun. 181, 1077 (2010)

* Numerical implementation with *SPheno*

W. Porod, Comput. Phys. Commun. 153, 275 (2003)

- Threshold corrections at intermediate scales
- Two types of fit to neutrino oscillation parameters
 - * Y_{ν} fit : Flavor in $Y_{\nu}LH_{u}\nu^{c} \supset Y_{L}L\Phi L^{c}$
 - \star *f* fit : Flavor in $fL\Delta L$

Left vs Right: types of fit

 \mathbf{Y}_{ν} fit f fit GUT scale : $m_L^2 = m_E^2 = m_0^2 \, \mathcal{I}_3$ GUT scale : $\mathbf{m}_{\mathbf{L}}^{\mathbf{2}} = \mathbf{m}_{\mathbf{E}}^{\mathbf{2}} = \mathbf{m}_{\mathbf{0}}^{\mathbf{2}} \, \mathcal{I}_{\mathbf{3}}$ $v_{\mathbf{R}}$ scale : $m_{\mathbf{L}}^2 = m_{\mathbf{E}}^2$ $v_{\mathbf{R}}$ scale : $m_{\mathbf{L}}^2 = m_{\mathbf{E}}^2$ due to parity conservation due to parity conservation off-diagonal m_E^2 and m_L^2 stop running off-diagonal m_E^2 stop running $\mathbf{v_{BL}}$ scale : $\mathbf{m_L^2}
eq \mathbf{m_E^2}$ off-diagonal m_L^2 stop running SUSY scale : $\mathbf{m}_{\mathbf{L}}^{\mathbf{2}}
eq \mathbf{m}_{\mathbf{E}}^{\mathbf{2}}$ SUSY scale : $\mathbf{m}_{\mathbf{L}}^{\mathbf{2}}
eq \mathbf{m}_{\mathbf{E}}^{\mathbf{2}}$

- ★ Large LFV entries in both sectors.
- * In case of the Y_{ν} fit, the L-R difference is sensitive to the $v_{BL} v_{R}$ difference.

$$m_{\nu} = -\frac{v_u^2}{2} \, Y_{\nu}^T \cdot M_R^{-1} \cdot Y_{\nu}$$

The absolute value of LFV BR's is linked to the Seesaw scale.

Avelino Vicente - SUSY LR models and low energy phenomenology

Planck 2011 - 31 / 18

SPS3 benchmark point

$\tilde{e} - \tilde{\mu}$ mass splitting

 Y_{ν} fit $v_{BL}=10^{15}~{\rm GeV}$, $v_R\in[10^{15},10^{16}]~{\rm GeV}$

- Sizeable splittings $m_{\tilde{e}} m_{\tilde{\mu}}$ are produced by RGE running in the L and R sectors.
- Sensitivities around 10^{-4} can be reached at the LHC for both observables (Allanach et al. PRD 77 (2008) 076006).
- Deviations from the mSUGRA prediction ($m_{\tilde{e}} \simeq m_{\tilde{\mu}}$) are measurable.

Avelino Vicente - SUSY LR models and low energy phenomenology

SPS1a' benchmark point

$\tilde{e} - \tilde{\mu}$ mass splitting

 $$Y_{\nu}$ fit $v_{BL}=10^{15}~{\rm GeV}$$, $v_R\in[10^{15},10^{16}]~{\rm GeV}$$

$$ilde{\chi}^0_2
ightarrow ilde{l}^\pm l^\mp
ightarrow ilde{\chi}^0_1 l^\pm l^\mp$$

Large splittings $m_{\tilde{e}} - m_{\tilde{\mu}}$ are produced by RGE running in the L and R sectors.

$\underline{l_i \to l_j \gamma}$

 $l_i \rightarrow l_j \gamma$ processes are enhanced by off-diagonal Δm_L^2 and Δm_E^2 . For example, in the case of $\mu \rightarrow e\gamma$:

 $Br(\mu \to e\gamma) \propto \Delta (m_{L,E}^2)_{12}^2$

 $l_i \rightarrow l_j \gamma$

 $\mu
ightarrow \mathrm{e}\gamma$

Non-negligible right-handed contribution

 \Rightarrow Larger Br's w.r.t. stardard seesaw

Avelino Vicente - SUSY LR models and low energy phenomenology

Planck 2011 - 35 / 18

 $\mathcal{A}(\mu^+
ightarrow \mathrm{e}^+ \gamma)$

Strong dependence on m_0 due to slepton masses

 $\mathcal{A}(\mu^+ \to e^+ \gamma)$

- Large m_0 : Comparable L and R slepton masses, LFV in the L sector dominates
- Small m_0 : Lighter **R** sleptons compensate the additional LFV in the **L** sector

SPS3 benchmark point

f fit $v_{BL} = 10^{15}~{\rm GeV}$, $v_R = 5\cdot 10^{15}~{\rm GeV}$

 $ilde{\chi}^0_2
ightarrow ilde{\chi}^0_1 \, l_i \, l_j$ with i
eq j

$$\begin{split} & K_{e\mu} \text{ defined as} \\ & \frac{Br(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 e\mu)}{Br(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 ee) + Br(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \mu\mu)} \end{split}$$

If the intermediate L and R sleptons are on-shell (as in SPS3) one can distinguish between $K^L_{e\mu}$ and $K^R_{e\mu}$ and find LFV in both sectors

This signal can be discovered at the LHC if $K_{e\mu} \ge 0.04$ See Andreev et al., Phys. Atom. Nucl. 70 (2007) 1717