Pros	pects on extensions of the Standard Model with vector-like quarks
	*
	Miguel Nebot – U. of Valencia & IFIC
	Lisbon, June 1 st 2011
	Planck 2011, From the Planck scale to the Electroweak scale

F.J. Botella (Univ. of Valencia & IFIC) &

G.C. Branco (CFTP-IST, Lisbon)

メロト メロト メヨト メヨト

∃ 990

Outline of the talk

1 Introduction

- 2 Constraints
- 3 Results
- 4 Conclusions

▲口 > ▲団 > ▲臣 > ▲臣 > ― 臣 - のへで

Introduction		
The basic fr	ramework	

Extensions of the Standard Model with

- The same gauge group $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$,
- An enlarged matter content through the inclusion of weak isospin singlet fermions

$$T_L^i, \ T_R^i \sim (3, 1, 4/3) \qquad B_L^j, \ B_R^j \sim (3, 1, -2/3)$$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□ ●

• N.B. Although leptons can be included too, we only consider quarks in the following

Introduction		
New terms in \mathscr{L}		

In addition to the usual Yukawa terms,

$$\mathscr{L}_Y = -\bar{q}_{L\mathbf{i}} \; \tilde{\Phi} \; Y_u^{\mathbf{i}}{}_{\mathbf{j}} \; u_R^{\mathbf{j}} - \bar{q}_{L\mathbf{i}} \; \Phi \; Y_d^{\mathbf{i}}{}_{\mathbf{j}} \; d_R^{\mathbf{j}} + \text{h.c.}$$

• if we add an up vectorlike quark, additional terms:

$$\mathscr{L}_T = -\bar{q}_{L\mathbf{i}} \; \tilde{\Phi} \; Y_T^{\mathbf{i}} \; T_{0R} - \bar{T}_{0L} \; y_{T\mathbf{i}} \; u_R^{\mathbf{i}} - M_T \; \bar{T}_{0L} \; T_{0R} + \text{h.c.}$$

• if we add a down vectorlike quark, additional terms:

$$\mathscr{L}_B = -\bar{q}_{L\mathbf{i}} \Phi Y_B^{\mathbf{i}} B_{0R} - \bar{B}_{0L} y_{B\mathbf{i}} d_R^{\mathbf{i}} - M_B \bar{B}_{0L} B_{0R} + \text{h.c.}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● のへで

Mass diagonalisation (1)

With SSB $\langle \Phi \rangle = \begin{pmatrix} 0 \\ \hat{v} \end{pmatrix}$, in the up case,

$$\mathscr{L}_{M} = -\left(\bar{u}_{L\mathbf{i}}\ \bar{T}_{0L}\right)\underbrace{\begin{pmatrix}\hat{v}Y_{u}\ \mathbf{j} & \hat{v}Y_{T} \\ y_{T\mathbf{j}} & M_{T}\end{pmatrix}}_{\hat{M}_{u}}\begin{pmatrix}u_{R}^{\mathbf{j}} \\ T_{0R}\end{pmatrix} - \bar{d}_{L\mathbf{i}}\underbrace{\hat{v}Y_{d}\ \mathbf{j}}_{M_{d}}d_{R}^{\mathbf{j}} + \text{h.c.}$$

The usual bidiagonalisation is

$$\begin{array}{l} \mathcal{U}_{L}^{u^{\dagger}} \hat{M}_{u} \hat{M}_{u}^{\dagger} \mathcal{U}_{L}^{u} = \operatorname{Diag}_{u}^{2} \\ \mathcal{U}_{R}^{u^{\dagger}} \hat{M}_{u}^{\dagger} \hat{M}_{u} \mathcal{U}_{R}^{u} = \operatorname{Diag}_{u}^{2} \end{array} \} \longrightarrow \mathcal{U}_{L}^{u^{\dagger}} \hat{M}_{u} \mathcal{U}_{R}^{u} = \operatorname{Diag}_{u} = \begin{pmatrix} {}^{m_{u}} {}^{m_{c}} {}^{m_{c}} \\ {}^{m_{c}} {}^{m_{t}} {}^{m_{c}} \end{pmatrix} \\ \mathcal{U}_{L}^{d^{\dagger}} \mathcal{M}_{d} \mathcal{M}_{d}^{\dagger} \mathcal{U}_{L}^{d} = \operatorname{Diag}_{d}^{2} \\ \mathcal{U}_{R}^{d^{\dagger}} \mathcal{M}_{d}^{\dagger} \mathcal{M}_{d} \mathcal{U}_{R}^{d} = \operatorname{Diag}_{d}^{2} \\ \end{array} \} \longrightarrow \mathcal{U}_{L}^{d^{\dagger}} \mathcal{M}_{d} \mathcal{U}_{R}^{d} = \operatorname{Diag}_{d} = \begin{pmatrix} {}^{m_{d}} {}^{m_{s}} \\ {}^{m_{b}} \end{pmatrix}$$

Mass diagonalisation (2)

Through quark rotations

Introduction		

Fermion couplings to gauge fields (1)

Charged currents

$$\begin{aligned} \mathscr{L}_{CC} &= \frac{g}{\sqrt{2}} (W^{\dagger}_{\mu} J^{+\mu}_W + \text{h.c.}) \\ J^{+\mu}_W &= \bar{u}_{L\mathbf{i}} \ \gamma^{\mu} \ d^{\mathbf{i}}_L \end{aligned}$$

in the mass basis

$$J_W^{+\mu} = \bar{u}_{La} \ \gamma^{\mu} (V_{CKM})^a{}_b \ d_L^b, \quad a = 1, 2, 3, 4; \ b = 1, 2, 3$$

The CKM matrix is

$$V_{b}^{a} = (\mathcal{U}_{L}^{u\dagger})_{\mathbf{j}}^{a} (\mathcal{U}_{L}^{d})_{b}^{\mathbf{j}}, \quad \mathbf{j} = 1, 2, 3$$
$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \\ V_{Td} & V_{Ts} & V_{Tb} \end{pmatrix}$$

1 990

It has orthonormal columns

Miguel Nebot – U. of Valencia & IFIC

Fermion couplings to gauge fields (2)

■ Neutral currents (A)

$$\mathscr{L}_{\psi\psi\gamma} = e \ A_{\mu} \ J^{\mu}_{em}$$

with

$$\begin{split} J_{em}^{\mu} &= \frac{2}{3} \bar{u}_{L\mathbf{i}} \; \gamma^{\mu} \; u_{L}^{\mathbf{i}} + \frac{2}{3} \bar{u}_{R\mathbf{i}} \; \gamma^{\mu} \; u_{R}^{\mathbf{i}} + \\ &- \frac{1}{3} \bar{d}_{L\mathbf{i}} \; \gamma^{\mu} \; d_{L}^{\mathbf{i}} - \frac{1}{3} \bar{d}_{R\mathbf{i}} \; \gamma^{\mu} \; d_{R}^{\mathbf{i}} + \\ &\quad \frac{2}{3} \bar{T}_{0L} \; \gamma^{\mu} \; T_{0L} + \frac{2}{3} \bar{T}_{0R} \; \gamma^{\mu} \; T_{0R} \end{split}$$

remains diagonal, as it should, in the mass basis

$$J_{em}^{\mu} = \frac{2}{3} \bar{u}_a \gamma^{\mu} u^a - \frac{1}{3} \bar{d}_b \gamma^{\mu} d^b, \qquad a = 1, 2, 3, 4; \ b = 1, 2, 3$$

(日) (四) (王) (王) (王)

ъ.

Fermion couplings to gauge fields (3)

■ Neutral currents (Z)

$$\mathscr{L}_{\psi\psi Z} = \frac{g}{2c_w} \ Z_\mu \ J_Z^\mu$$

with

$$J_{Z}^{\mu} = \bar{u}_{L\mathbf{i}} \ \gamma^{\mu} \ u_{L}^{\mathbf{i}} - \bar{d}_{L\mathbf{i}} \ \gamma^{\mu} \ d_{L}^{\mathbf{i}} - 2s_{w}^{2} \ J_{em}^{\mu}$$

gives, in the mass basis,

$$J_Z^{\mu} = \bar{u}_{La} \gamma^{\mu} (VV^{\dagger})^a{}_b u_L^b - \bar{d}_{Lc} \gamma^{\mu} d_L^c - 2s_w^2 J_{em}^{\mu}$$
$$a, b = 1, 2, 3, 4; c = 1, 2, 3$$

= na0

Fermion couplings to gauge fields (4)

Explicitely, the mixing matrix is embedded in a unitary matrix $V \hookrightarrow U$

$$U = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & U_{u4} \\ V_{cd} & V_{cs} & V_{cb} & U_{c4} \\ V_{td} & V_{ts} & V_{tb} & U_{t4} \\ V_{Td} & V_{Ts} & V_{Tb} & U_{T4} \end{pmatrix} \qquad 4 \times 4 \text{ unitary}$$

The FCNC couplings are thus controlled by

$$(VV^{\dagger})_{ij} = \delta_{ij} - U_{i4}U_{j4}^*$$

For example, the tcZ coupling is

$$\frac{g}{2\cos\theta_W} \left[\bar{c}_L \gamma^\mu (-\boldsymbol{U_{c4}}\boldsymbol{U_{t4}^*}) t_L + \bar{t}_L \gamma^\mu (-\boldsymbol{U_{t4}}\boldsymbol{U_{c4}^*}) c_L \right] Z_\mu \subset \mathscr{L}_{\psi\psi Z}$$

while the ttZ coupling is

$$\frac{g}{\cos\theta_W}\bar{t}_L\gamma^\mu(1-|U_{t4}|^2)t_L\ Z_\mu\subset\mathscr{L}_{\psi\psi Z}$$

Introduction		

Summary of this (biased) pocket introduction to models with (up) vectorlike quarks:

- **New** mass eigenstate (eigenvalue m_T)
- Enlarged mixing matrix $V_{u_i d_j}$, $u_i = u, c, t, T$ and $d_j = d, s, b$ controlling charged current interactions
- Presence of tree level FCNC only in the up sector, naturally suppressed if we think in terms of "Mixing $\sim \frac{m_q}{M}$ ", seesaw-like.

▲ロト ▲圖ト ▲画ト ▲画ト 三国 - のへで

Introduction		
Motivations		

The Standard Model shows an outstanding consistency for an impressive list of flavour-related observables... Nevertheless, recent times had brought interesting news

- Time-dependent, mixing induced, CP violation in $B_s \rightarrow J/\Psi \Phi$ measured at the Tevatron experiments,
- Same sign dimuon asymmetry A in B decays measured at the Tevatron experiments too,

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- (Hints from $b \to s$ penguin transitions.)
- $(D^0 \overline{D}^0 \text{ mixing at B factories})$

Introduction	Results	

Can we expect some help from vector-like quarks?

- New contributions to $M_{12}^{B_s}$ (quarks T running in the box) to address the $B_s^0 \bar{B}_s^0$ mixing phase,
- Deviations from 3×3 unitarity to modify $\Gamma_{12}^{B_q}$ and address the dimuon asymmetry.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- New contributions to loop processes (rare decays)
- (Short distance contributions to $D^0 \overline{D}^0$ mixing)
- ... maybe something else
 - rare top decays $t \to c Z$ observable at the LHC ?
 - enhanced rare decays $B_s \to \mu \bar{\mu}$?

Introduction		
Phase conven	tion/Notation	

With no loss of generality one can rephase

$$\arg U = \begin{pmatrix} 0 & \chi' & -\gamma & \cdots \\ \pi & 0 & 0 & \cdots \\ -\beta & \pi + \beta_s & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

where

$$\begin{split} \beta &\equiv \arg(-V_{cd}V_{cb}^*V_{td}^*V_{tb}) \qquad \gamma \equiv \arg(-V_{ud}V_{ub}^*V_{cd}^*V_{cb}) \\ \beta_s &\equiv \arg(-V_{ts}V_{tb}^*V_{cs}^*V_{cb}) \qquad \chi' \equiv \arg(-V_{cd}V_{cs}^*V_{ud}^*V_{us}) \end{split}$$

G.C.Branco, L.Lavoura Phys. Lett. B208, 123 (1988)

R.Aleksan, B.Kayser, D.London, Phys. Rev. Lett. 73, 18 (1994), hep-ph/9403341

▲ロト ▲□ト ▲目ト ▲目ト 三日 - つんの

• Agreement with purely tree level observables constraining V

 $|V_{ud}|, |V_{us}|, |V_{ub}|, |V_{cd}|, |V_{cs}|, |V_{cb}|, \gamma$

< 口 > (四 > (四 > (三 > (三 >)))

I na∩

Agreement with the following observables potentially sensitive to New Physics

- Mixing induced, time dependent, CP-violating asymmetry in $B^0_d \to J/\Psi K_S$
- Mass differences ΔM_{B_d} , ΔM_{B_s} , of the eigenstates of the effective Hamiltonians controlling $B_d^0 - \bar{B}_d^0$ and $B_s^0 - \bar{B}_s^0$ mixings
- Width differences $\Delta \Gamma_d / \Gamma_d$, $\Delta \Gamma_s$, $\Delta \Gamma_s^{CP}$ of the eigenstates of the mentioned effective Hamiltonians, related to $\operatorname{Re}\left(\Gamma_{12}^{B_q}/M_{12}^{B_q}\right)$, a = d.s
- Charge/semileptonic asymmetries $\mathcal{A}, A_{sl}^d, A_{sl}^s$, controlled by $\operatorname{Im}\left(\Gamma_{12}^{B_q}/M_{12}^{B_q}\right), q = d, s$

A. Lenz, U. Nierste JHEP 0706, 072 (2007), hep-ph/0612167

(日) (종) (종) (종) (종) (종)

• Neutral kaon CP-violating parameters ϵ_K and ϵ'/ϵ_K

E. Pallante, A. Pich, Phys. Rev. Lett. 84, 2568 (2000), hep-ph/9911233

Nucl. Phys. B617, 441 (2001), hep-ph/0105011

A. Buras, M. Jamin, JHEP 01, 048 (2004), hep-ph/0306217

Branching ratios of representative rare K and B decays such as $K^+ \to \pi^+ \nu \bar{\nu}$, $(K_L \to \mu \bar{\mu})_{SD}$, $B \to X_s \gamma$ and $B \to X_s \ell^+ \ell^-$

FlaviaNet WG on Kaon Decays, arXiv:0801.1817

A. Buras, M. Gorbahn, U. Haisch, U. Nierste, Phys. Rev. Lett. 95, 261805 (2005),

F. Mescia, C. Smith, Phys. Rev. D76, 034017 (2007), arXiv:0705.2025

· · · , · · ·

• Electroweak oblique parameter T, which encodes violation of weak isospin; the S and U parameters play no relevant rôle here.

L. Lavoura, J.P. Silva, Phys. Rev. D47, 1117 (1993)

(日) (同) (三) (三)

. . .

э.

J. Alwall et al., Eur. Phys. J. C C49, 791 (2007), hep-ph/0607115

I.Picek, B.Radovcic, Phys. Rev. D78, 015014 (2008), arXiv:0804.2216

Beside experimentally based constraints, agreement is also required for every parameter entering the calculation of the observables: QCD corrections, lattice-QCD bag factors, etc.

troc	inctio.	

Constraints – The experimental values

Observable	Exp. Value	Observable	Exp. Value
$ V_{ud} $	0.97377 ± 0.00027	$ V_{us} $	0.2257 ± 0.0021
$ V_{cd} $	0.230 ± 0.011	$ V_{cs} $	0.957 ± 0.095
$ V_{ub} $	0.00431 ± 0.00030	$ V_{cb} $	0.0416 ± 0.0006
γ	$(77 \pm 14)^{\circ}$		
$A_{J/\psi K_S}$	0.673 ± 0.023	$A_{J/\Psi\Phi}$	0.540 ± 0.27
$\Delta M_{B_d}(\times \text{ps})$	0.508 ± 0.004	ΔM_{B_s} (× ps)	17.78 ± 0.12
x_D	0.0097 ± 0.0029	ΔT	0.13 ± 0.10
$\epsilon_K(\times 10^3)$	2.232 ± 0.007	$\epsilon'/\epsilon_K(\times 10^3)$	1.67 ± 0.16
$\operatorname{Br}(K^+ \to \pi^+ \nu \bar{\nu})$	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	$\operatorname{Br}(K_L \to \mu \bar{\mu})_{SD}$	$<2.5\times10^{-9}$
$\operatorname{Br}(B \to X_s \ell^+ \ell^-)$	$(1.60 \pm 0.51) \times 10^{-6}$	$\operatorname{Br}(B \to X_s \gamma)$	$(3.56 \pm 0.25) \times 10^{-4}$
$\operatorname{Br}(t \to cZ)$	$< 4 \times 10^{-2}$	$\operatorname{Br}(t \to uZ)$	$< 4 \times 10^{-2}$
$\Delta\Gamma_s (\times \text{ps})$	0.075 ± 0.036	$\Delta\Gamma_s^{CP}$ (× ps)	0.15 ± 0.11
$\Delta \Gamma_d / \Gamma_d$	-0.011 ± 0.037	\mathcal{A}	-0.0096 ± 0.0029
A^d_{sl}	-0.0047 ± 0.0046	A_{sl}^s	-0.0017 ± 0.0091

Table: Experimental values of observables.

	Constraints	
α \cdot \cdot \cdot	a	

Constraints – Summary

Tree level

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} & U_{14} \\ V_{cd} & V_{cs} & V_{cb} & U_{24} \\ V_{td} & V_{ts} & V_{tb} & U_{34} \\ V_{Td} & V_{Ts} & V_{Tb} & U_{44} \end{pmatrix} + \gamma = \arg(-V_{ud}V_{ub}^*V_{cd}^*V_{cb})$$

Kaon physics

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} & U_{14} \\ V_{cd} & V_{cs} & V_{cb} & U_{24} \\ V_{td} & V_{ts} & V_{tb} & U_{34} \\ V_{Td} & V_{Ts} & V_{Tb} & U_{44} \end{pmatrix}$$

Constraints – Summary

$\blacksquare B_d^0$ physics

 $\blacksquare B_s^0$ physics

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} & U_{14} \\ V_{cd} & V_{cs} & V_{cb} & U_{24} \\ V_{td} & V_{ts} & V_{tb} & U_{34} \\ V_{cd} & V_{cc} & V_{cc} & U_{d4} \end{pmatrix}$ $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} & U_{14} \\ V_{cd} & V_{cs} & V_{cb} & U_{24} \\ V_{td} & V_{ts} & V_{tb} & U_{34} \\ V_{cd} & V_{cd} & V_{cd} & V_{cd} & U_{dd} \end{pmatrix}$

	Constraints	
Constraints	– Summary	

\blacksquare Electroweak precision (ΔT)

$$egin{array}{cccccc} V_{ud} & V_{us} & V_{ub} & U_{14} \ V_{cd} & V_{cs} & V_{cb} & U_{24} \ V_{td} & V_{ts} & V_{tb} & U_{34} \ V_{Td} & V_{Ts} & V_{Tb} & U_{44} \end{array}$$

• $D^0 - \overline{D}^0$ mixing, rare top decays

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} & U_{14} \\ V_{cd} & V_{cs} & V_{cb} & U_{24} \\ V_{td} & V_{ts} & V_{tb} & U_{34} \\ V_{Td} & V_{Ts} & V_{Tb} & U_{44} \end{pmatrix}$$

	Results	
Method		

- Likelihood function of model parameters and constraints
- Use likelihood to conduct an exploration of the parameter space

Preliminary plots: the phase β

		$\operatorname{Results}$	
-			
Preliminary p	lots: the asymr	netry $A_{J/\Psi\Phi}$	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

		Conclusions
Conclusions		

- Through a new isosinglet Q = 2/3 quark and associated small violations of 3×3 unitarity, we can enhance some observables partially accounting for the differences with the SM expectations.
- However, if one tries *too hard* to accommodate these differences, the model may start to run into problems, other observables may suffer ...
- ... those are preliminary results, many parameters and more than 30 observables are involved, a complete and more detailed version of this analysis is necessary (and is in progress),

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

• ... and new experimental results are necessary too!

Thank you!

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

Miguel Nebot – U. of Valencia & IFIC