
Flavour Signals in SUSY GUT models

Minoru Nagai (Universe Cluster Munich, TU München)

Ref

JHEP 1105:005, 2011 [arXiv:1011.4853]

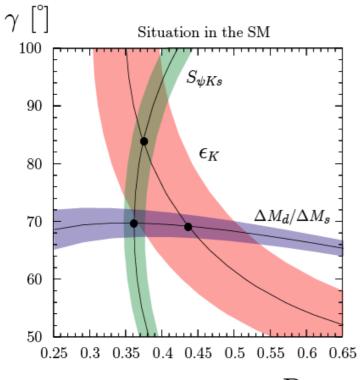
Collaborated with:

A. Buras (TUM), P. Paradisi (TUM)

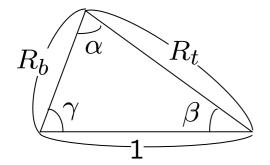
1. Introduction

High Energy Frontier

ATLAS, CMS start to constrain new physics models


- High Statistics Frontier
- Key ingredients to understand the flavor structure of the New Physics (NP)
- Possible to probe high energy physics which can't be accessed directly by colliders

LHCb, MEG experiments are coming soon


Some hints may be already presented:

UT tension, Bs mixing, muon g-2...

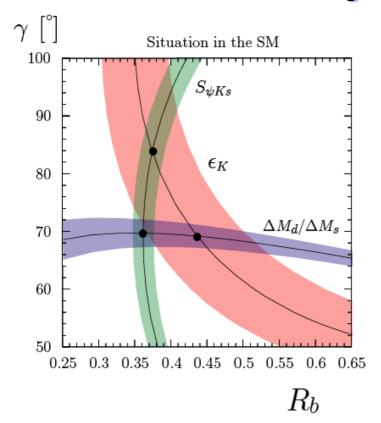
Tension in the Unitarity Triangle

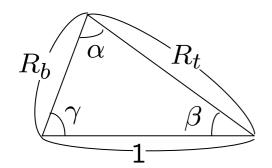
 R_b

Lunghi, Soni ('08); Buras, Guadagnoli ('08, '09)

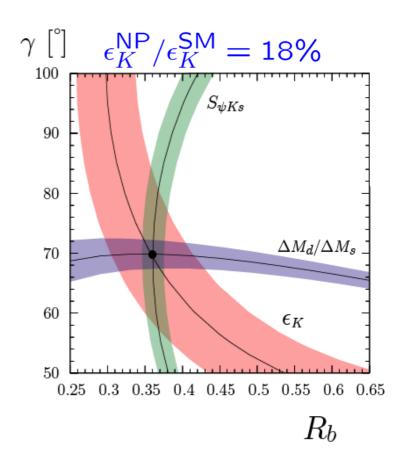
Using only $S_{\psi K_S}$ and $\Delta M_d/\Delta M_s$ to construct the UT,

$$\epsilon_K^{\text{SM}} = (1.90 \pm 0.26) \times 10^{-3}$$


$$\epsilon_K^{\text{exp}} = (2.229 \pm 0.010) \times 10^{-3}$$


Possible 3 solutions:

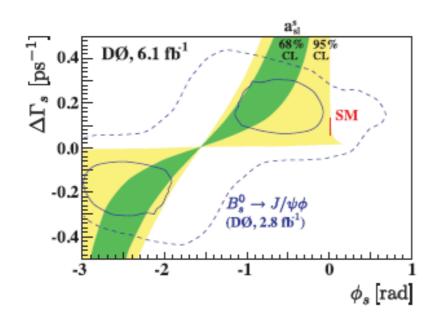
New physics contributes

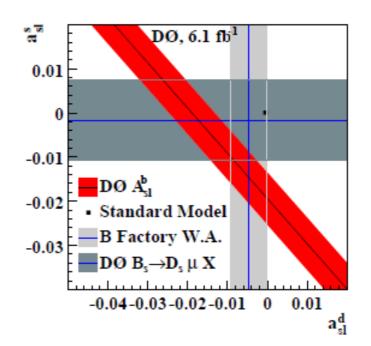

- 1) +20 % in ϵ_K
- 2) -4.5° in B_d mixing phase
- 3) 20 % in $\Delta M_d/\Delta M_s$

Tension in the Unitarity Triangle

Lunghi, Soni ('08); Buras, Guadagnoli ('08, '09)

Hint for New physics in Bs system?


<u>CP asymmetry in $B_s \to J/\psi \phi$ </u> \Rightarrow Sensitive to the phase of bs-mixing


$$S_{\psi\phi} = \sin(2|\beta_s| + 2\phi_s^{NP}) \quad (S_{\psi\phi}^{SM} = \sin|2\beta_s| \simeq 0)$$

<u>Dimuon charge asymmetry</u> (3.2 sigma deviation from the SM)

$$A_b^{\mathsf{SL}}(\mathsf{D0}) = (-9.57 \pm 2.51 \pm 1.46) \times 10^{-3}$$

$$A_b^{\mathsf{SL}} \simeq 0.5 a_d^{\mathsf{SL}} + 0.5 a_s^{\mathsf{SL}}, \quad a_s^{\mathsf{SL}} \simeq -10^{-3} S_{\psi\phi}/C_{bs}$$

Purpose of this talk

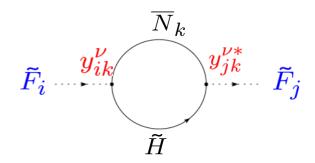
To clarify

- Implications of the currently available experimental hints
- Expected signals in up-coming experiments in SUSY GUT models.

Outline

- 1. Introduction
- 2. Flavor Structure in SUSY GUTs
- 3. Numerical Results
- 4. Summary

2. Flavour Structure in SUSY GUTs


SUSY SU(5) GUT with right-handed neutrinos (SSU(5)_{RN})

Matter multiplet: $T(U^c, Q, E^c)$, $F(D^c, L)$, N^c

Superpotential: $W = W_{SU(5)} + y_{\nu}N^{c}FH + M_{N}N^{c}N^{c}$

Neutrino Yukawa couplings induce flavor-violating soft masses both for quarks and leptons.

Neutrino Yukawa coupling

Left-handed slepton mixing
Right-handed sdown mixing

LFV, lepton EDM

Correlation!

Top Yukawa + **CKM** matrix

Right-handed slepton mixing

Left-handed sdown mixing

B & K physics, hadronic EDM

Correlation between observables in SSU(5)_{RN}

Leptonic sector

1-2 transition

 $A(\mu X \rightarrow eX)$

1-3 transition

$$Br(\mu \to e\gamma)$$
 $Br(\tau \to e\gamma)$
 $A(\mu X \to eX)$ d_e

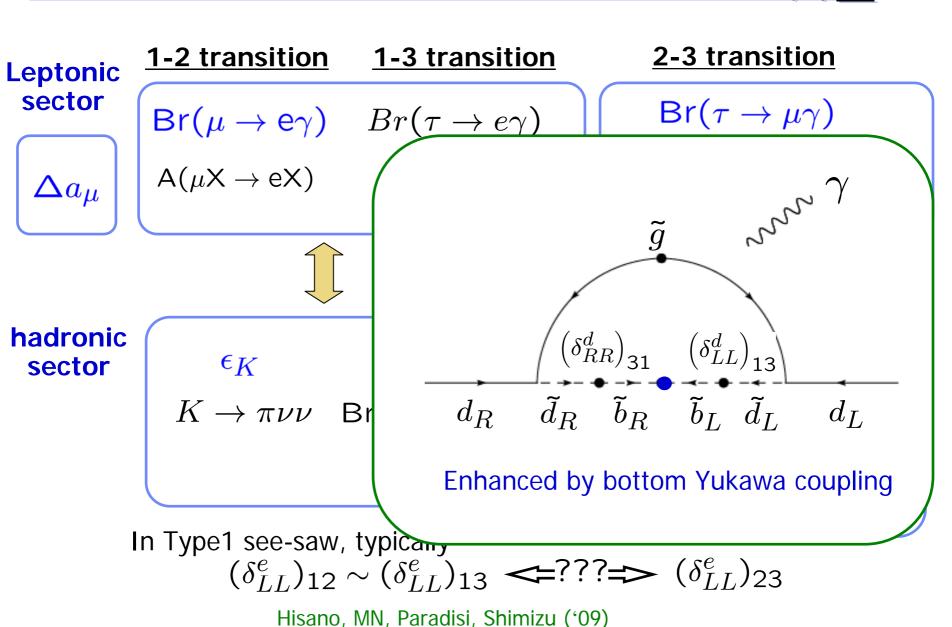
2-3 transition

$${\sf Br}(au o\mu\gamma)$$
 $d\mu$

GUT relations

hadronic sector

$$\epsilon_{K}$$
 $S_{\psi K_{S}}$ $K o \pi
u
u$ $\operatorname{Br}(\mathsf{B}_{\mathsf{d}} o \mu^{+}\mu^{-})$ d_{n}, d_{Hg}


 $S_{\psi\phi}$ Br(Bs $\rightarrow \mu^{+}\mu^{-})$ $S_{\phi K_S}, S_{\eta' K_S}$ $\mathsf{Br}, \mathsf{A}_{\mathsf{CP}}(B \to X_s \gamma)$

In Type1 see-saw, typically

$$(\delta_{LL}^e)_{12} \sim (\delta_{LL}^e)_{13} \iff (\delta_{LL}^e)_{23}$$

Hisano, MN, Paradisi, Shimizu ('09)

Correlation between observables in SSU(5)_{RN}

Correlation between observables in SSU(5)_{RN}

Leptonic sector

1-2 transition

1-3 transition

$${\sf Br}(\mu \to {\sf e}\gamma) \quad Br(\tau \to e\gamma)$$
 ${\sf d}_e$

2-3 transition

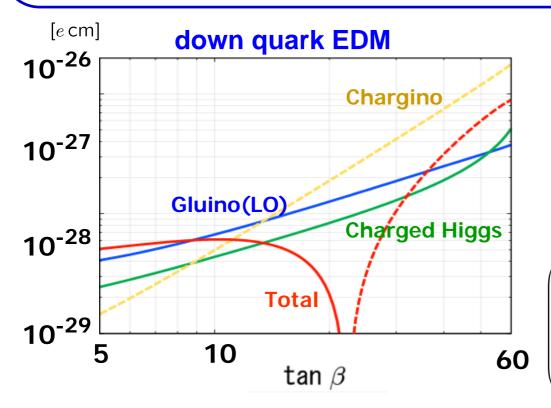
$${\sf Br}(au o\mu\gamma)$$
 $d\mu$

GUT relations

hadronic sector

$$\epsilon_{K}$$
 $S_{\psi K_{S}}$ $K \to \pi \nu \nu$ $\text{Br}(\mathsf{B}_{\mathsf{d}} \to \mu^{+}\mu^{-})$ d_{n}, d_{Hg}

 $S_{\psi\phi}$ $\mathsf{Br}(\mathsf{B_S} o \mu^+\mu^-)$ $S_{\phi K_S}, \, S_{\eta' K_S}$ $\mathsf{Br}, \mathsf{A_{CP}}(B o X_s\gamma)$


In Type1 see-saw, typically

$$(\delta_{LL}^e)_{12} \sim (\delta_{LL}^e)_{13} \iff (\delta_{LL}^e)_{23}$$

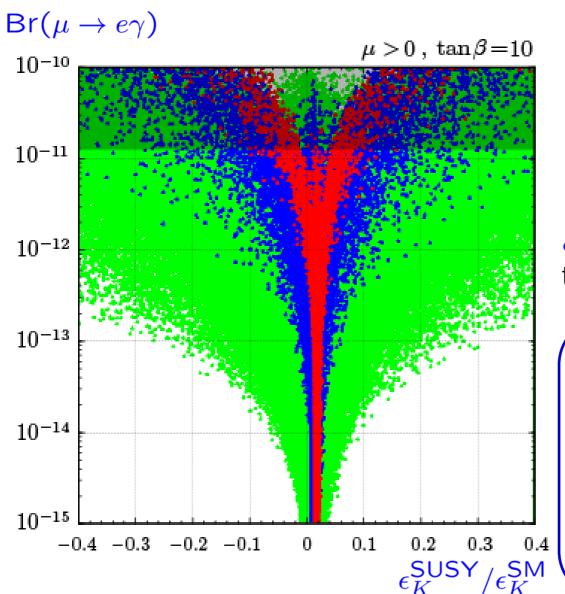
Hisano, MN, Paradisi, Shimizu ('09)

What is NEW features in our analysis?

- The numbers of considered observables
 (Essential for the model discrimination!)
- ◆ Special focus on the UT tension and its implications
- $lacktrian \beta$ enhanced corrections are systematically included
 - ⇒ Especially, unavoidable to calculate EDMs Hisano, MN, Paradisi ('06, '08)

Not only
$$m_b o rac{m_b}{1 + \epsilon t_\beta}$$

But also, new Jarskog inv.

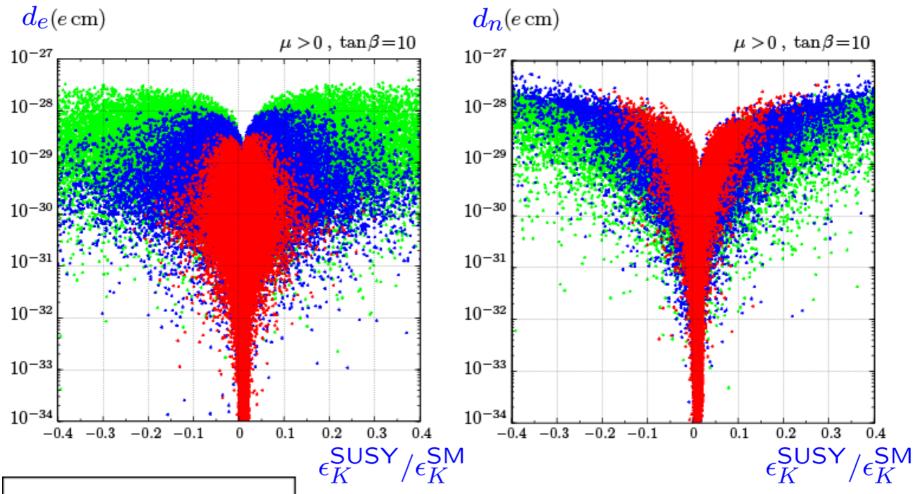

$$\begin{split} &\operatorname{Im}[\delta_{LL}\delta_{RR}] \\ &+ \ \epsilon t_{\beta}\operatorname{Im}[V_{CKM}\delta_{RR}] \end{split}$$

$$M_{H_c} = 2 imes 10^{16} {
m GeV}$$
 $M_{N_3} = 10^{14} {
m GeV}$ $m_{
u_{ au}} = 0.05 {
m eV}$ $U_{e3} = 0.01$ $A_0 = 0, \; \mu > 0$ $m_0 = 400 {
m GeV}$ $M_{1/2} = 400 {
m GeV}$

3. Numerical Results

Scan of parameters in the mSUGRA scenario

Correlation between Leptonic and Hadronic Sectors (1)

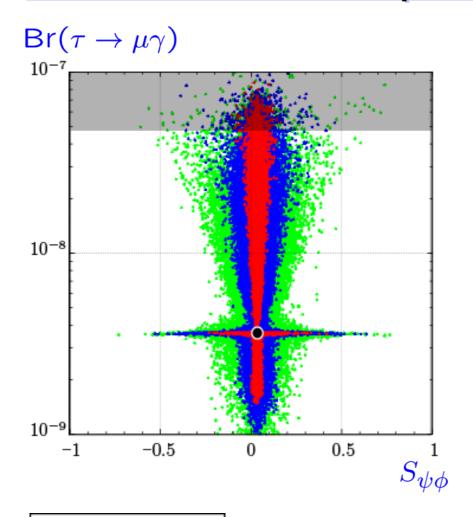

$$\Delta a_{\mu} < 1 imes 10^{-9}$$
 • $\Delta a_{\mu} > 1 imes 10^{-9}$ • $\Delta a_{\mu} > 2 imes 10^{-9}$ •

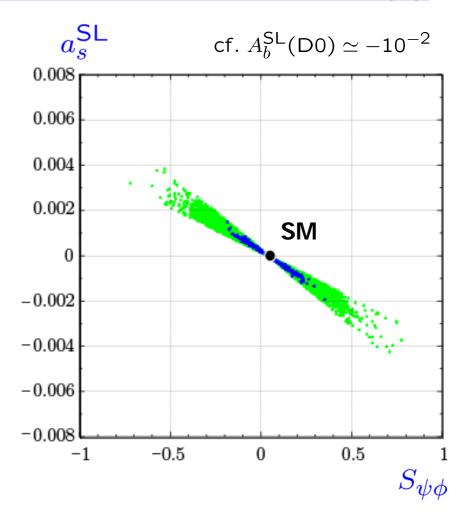
 $\epsilon_K^{\rm SUSY}/\epsilon_K^{\rm SM}\sim 0.2$ is desirable to solve the UT tension

- •Sizable SUSY effects in epsK imply a lower bound on $Br(\mu \to e\gamma)$
- •Simultaneous explanation of $(g-2)_{\mu}$

$$Br(\mu \to e\gamma) > 10^{-12}$$

Predictions of EDMs

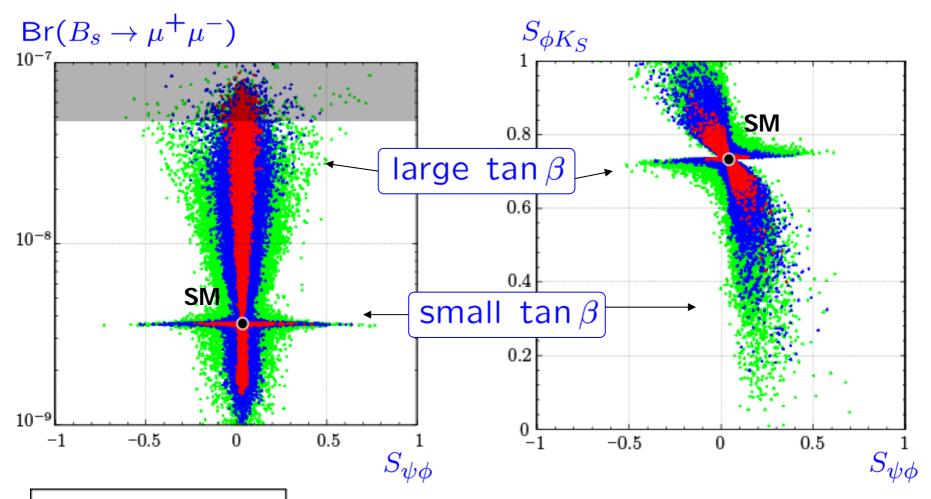



$$BR(\mu{\rightarrow}e\gamma){<}10^{-11}$$
 • $BR(\mu{\rightarrow}e\gamma){<}10^{-12}$ • $BR(\mu{\rightarrow}e\gamma){<}10^{-13}$ •

Sizable SUSY effect in epsK

 $\Rightarrow d_e \& d_n$ in the reach of planned experiments

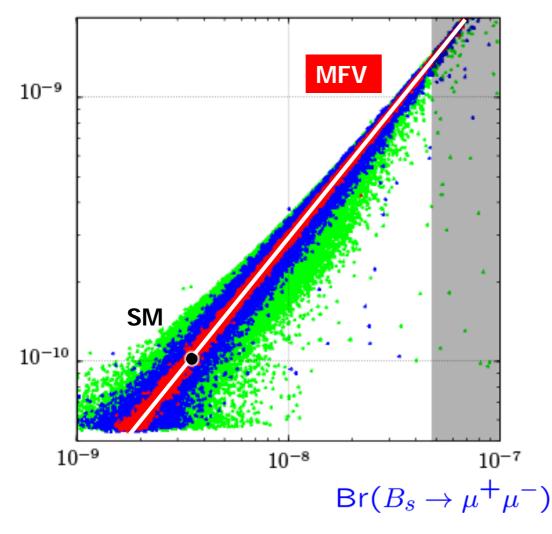
Correlation between Leptonic and Hadronic Sectors (2)



$$\Delta a_{\mu} < 10^{-9}$$
 • $\Delta a_{\mu} > 10^{-9}$ •

- Sizable $S_{\psi\phi}$ is possible, giving lower limits on $\text{Br}(\tau \to \mu \gamma)$
- $\Delta a_{\mu} > 10^{-9}$ \Rightarrow $|S_{\psi\phi}| < 0.2$ with large tanbeta

Correlations between B meson observables



$$BR(\tau \rightarrow \mu \gamma) > 10^{-8}$$
 • $BR(\tau \rightarrow \mu \gamma) < 10^{-8}$ • $BR(\tau \rightarrow \mu \gamma) < 10^{-9}$ •

- Sizable departures from the SM predictions
- ullet Simultaneous explanation of $S_{\psi\phi}$ and $S_{\phi K_S}$

MFV or not?

$$Br(B_d \to \mu^+ \mu^-)$$

$$BR(au o\mu\gamma)>10^{-8}$$
 • $BR(au o\mu\gamma)<10^{-8}$ • $BR(au o\mu\gamma)<10^{-9}$ •

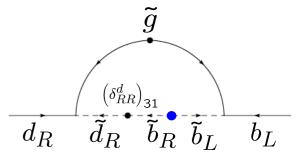
Sizable deviation from the MFV prediction implies large $\text{Br}(\tau \to \mu \gamma)$, well within the reach of SuperB experiments.

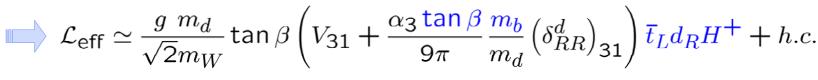
4. Summary

We analyzed the flavour signals in the SUSY SU(5) GUT with right-handed neutrino model, motivated by recent experimental data.

- GUT relation is one of the most important features in the SUSY GUT models, leading Rich Flavour Phenomena both in leptonic and hadronic sectors.
- We found several important correlations between observables to probe or falsify the model.

$$\epsilon_{K}, \, \operatorname{Br}(\mu \to e \gamma), \, \underbrace{S_{\psi \phi}, \, \operatorname{Br}(B_{s} \to \mu^{+}\mu^{-})}_{\text{LHCb}}, \, \operatorname{Br}(\tau \to \mu \gamma) \cdots$$


Back Up Slide


Higgs-mediated Two-loop Contribution

Effective Higgs coupling

Threshold corrections to down quark mass:

old corrections to down quark mass :
$$(m_d)_{ij} \simeq m_{d_i}^{\mathsf{tree}} \delta_{ij} - \frac{\alpha_{\mathsf{3}}}{9\pi} \tan\beta \ m_{d_i}^{\mathsf{tree}} (\delta_{RR}^d)_{ij} \qquad \overrightarrow{d_R} \quad \overline{\tilde{d}_R} \quad \overline{\tilde{b}_R} \quad \overline{\tilde{b}_L}$$

Tree level

1-loop level

Non-decoupling at the large SUSY particle mass limit

Charged Higgs contribution to EDMs

• Charged Higgs contribution to EDMs
$$J_{RR}^d = \operatorname{Im} \left(y_u y_u^\dagger \, y_d \, \delta_{RR}^d \right)_{11} \gamma$$

$$d_d/e \sim \frac{\alpha_2}{4\pi} \frac{\alpha_3}{4\pi} \left(\frac{m_t^2}{m_W^2} \right) \frac{m_b \tan \beta}{M_{H^+}^2} \operatorname{Im} \left[V_{31}^* \left(\delta_{RR}^d \right)_{31} \right] \qquad H^- \gamma^{-1} \gamma^{-1}$$

Flavor mixing in the SUSY see-saw model

$$(m_{\tilde{e}_L})_{ij} \simeq -\frac{3m_0^2 + A_0^2}{8\pi^2} \sum_{l,m} U_{il} U_{jm}^* H_{lm}$$

where

$$H_{ij} = \sum_k \frac{\sqrt{m_{\nu_i} m_{\nu_j}} M_{\nu_k}}{\langle H_u \rangle} \log \left(\frac{M_{pl}}{M_{\nu_k}}\right) R_{ik} R_{jk}^*$$

R: orthogonal complex matrix

U: PMNS matrix

cf. neutrino Yukawa coupling
Casas, Ibarra ('01)

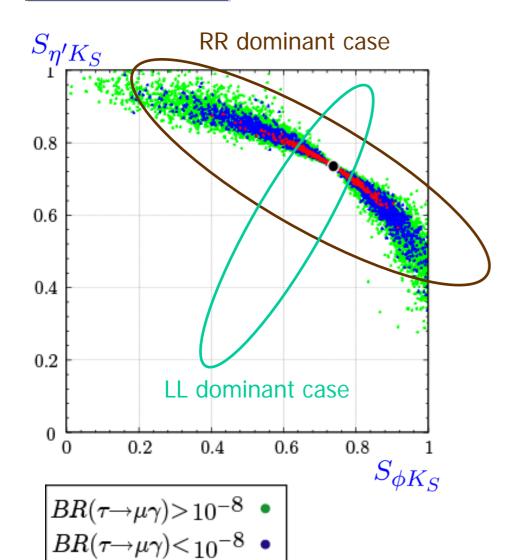
Because of observed

two large mixing angle

$$y_{\nu}^{\dagger} = \sqrt{\widehat{M}_{\nu}} R \sqrt{\widehat{m}_{\nu}} U / \langle H_{u} \rangle$$

The structure of matrix H is not determined by the neutrino oscillation data. However, the relative size of off-diagonal components is controlled by the PMNS matrix. Especially,

implies


$$U_{1l}U_{3m}^*\simeq U_{1l}U_{2m}^*$$
 for any l,m
$$(m_{\widetilde{e}_I})_{13}\simeq (m_{\widetilde{e}_I})_{12}$$

as long as R, and then H, is given randomly. Hisano, MN, Paradisi, Shimizu ('09)

Deviation from the above prediction may imply the existence of some specific flavor symmetries.

RR current

 $BR(\tau \rightarrow \mu \gamma) < 10^{-9}$

$$A^{\text{NP}} \sim C_i^L + \zeta C_i^R$$

$$\zeta = +1 \quad \text{for } \phi K_s$$

$$\zeta = -1 \quad \text{for } \eta' K_s$$

Dependence on Final state Parity

In our case, RR current generated from neutrino Yukawa couplings is the dominant sources of flavor violation