The Reactor Antineutrino Anomaly and Large Extra Dimensions

Pedro A N Machado^{1,2} H Nunokawa³, FA Pereira dos Santos³, R Zukanovich Funchal¹ ¹Universidade de São Paulo, ²CEA-Saclay, ³PUC-RIO Based on MNZ arXiv:1101.0003 and MNPZ in preparation jun-01-2011 Planck 2011 - IST, Lisbon

Outline

- Basics of v oscillations

- Neutrinos and large extra dimensions

- Reactor antineutrino anomaly

Basics of

V

oscillations

Smirnov, Feruglio and Valle talks...

Basics of v oscillations Formalism

Neutrinos oscillate:

123100131 = 0012

PAN Machado - The reactor \overline{v} anomaly and LED

Basics of ν oscillations Probabilities

$$P\left(\nu_{\alpha} \to \nu_{\beta}; L\right) = \left|A\left(\nu_{\alpha} \to \nu_{\beta}; L\right)\right|^{2}$$
$$A\left(\nu_{\alpha} \to \nu_{\beta}; L\right) = \sum_{i} U_{\alpha i} U_{\beta i}^{*} \exp\left(-i\frac{m_{i}^{2}L}{2E_{\nu}}\right)$$

PAN Machado - The reactor \overline{v} anomaly and LED

Neutrinos

and

Large Extra Dimensions

Arkani-Hamed, Dimopoulos, Dvali, March-Russel, PRD65 2002 Dienes, Dudas, Gherghetta, Nucl.Phys.B557 1999 Dvali, Smirnov, Nucl.Phys.B563 1999 Barbieri, Creminelli, Strumia, Nucl.Phys.B585 2000 Davoudiasl, Langacker, Perelstein, PRD65 2002 PANM, Nunokawa, Zukanovich Funchal, arXiv:1101.0003

Large Extra Dimensions Motivation

Suppose n compactified extra dimensions $(n \ge 2)$

The hierarchy problem: $m_{EW} = 1 \text{ TeV} \longleftarrow M_{Pl} = 10^{18} \text{ GeV}$

Large Extra Dimensions Motivation

Suppose n compactified extra dimensions $(n \ge 2)$

The hierarchy problem: $m_{EW} = 1 \text{ TeV} \longleftarrow M_{Pl} = 10^{18} \text{ GeV}$

We can generate small Dirac masses for the neutrinos introducing 3 bulk fermion singlets

These masses arrive from Yukawa couplings

The smallness of the neutrino masses comes from a volume suppresion

Large Extra Dimensions The model

In the end of the day, we have to diagonalize the following matrix in the KK space, which introduces mixing

size of ex. dim.	$(N+1/2)\xi_i^2$	ξ_i	$2\xi_i$	• • •	$N\xi_i$ `
	ξ_i	1	0	• • •	0
$a^2 M_i^{\dagger} M_i = \lim$	$2\xi_i$	0	4	• • •	0
$N \rightarrow \infty$	•	•	•	•	•
$\xi_i = \sqrt{2} m_i a$	$\langle N\xi_i$	0	0	• • •	N^2

$$P\left(\nu_{\alpha}^{(0)} \to \nu_{\beta}^{(0)}; L\right) = \left|A\left(\nu_{\alpha}^{(0)} \to \nu_{\beta}^{(0)}; L\right)\right|^{2}$$

Large Extra Dimensions The model

In the end of the day, we have to diagonalize the following matrix in the KK space, which introduces mixing

size of ex. dim.	$(N+1/2)\xi_i^2$	ξ_i	$2\xi_i$	• • •	$N\xi_i$	
	ξ_i	1	0	•••	0	
$a^2 M_i^{\dagger} M_i = \lim$	$2\xi_i$	0	4	•••	0	
$^{\iota}$ $^{\circ}$ $N { ightarrow} \infty$	•	•	•	•	•	
$\xi_i = \sqrt{2} m_i a$	$\setminus N\xi_i$	0	0	• • •	N^2 ,	

$$A\left(\nu_{\alpha}^{(0)} \to \nu_{\beta}^{(0)}; L\right) = \sum_{i,j,k} \sum_{N=0}^{\infty} U_{\alpha i} U_{\beta k}^{*} W_{ij}^{(0N)*} W_{kj}^{(0N)} \exp\left(i\frac{\lambda_{j}^{(N)2}L}{2Ea^{2}}\right)$$

$$= \sum_{i} U_{\alpha i} U_{\beta i}^{*} \exp\left(-i\frac{m_{i}^{2}L}{2E_{\nu}}\right)$$
PAN Machado - The reactor $\bar{\nu}$ anomaly and LEE

Large Extra Dimensions The model

$$A\left(\nu_{\alpha}^{(0)} \to \nu_{\beta}^{(0)}; L\right) = \sum_{i,j,k} \sum_{N=0}^{\infty} U_{\alpha i} U_{\beta k}^{*} W_{ij}^{(0N)*} W_{kj}^{(0N)} \exp\left(i\frac{\lambda_{j}^{(N)2}L}{2Ea^{2}}\right)$$

PAN Machado - The reactor $\overline{\nu}$ anomaly and LED

Large Extra Dimensions The model

$$A\left(\nu_{\alpha}^{(0)} \to \nu_{\beta}^{(0)}; L\right) = \sum_{i,j,k} \sum_{N=0}^{\infty} U_{\alpha i} U_{\beta k}^{*} W_{ij}^{(0N)} W_{kj}^{(0N)} \exp\left(i\frac{\lambda_{j}^{(N)2}L}{2Ea^{2}}\right)$$

Almost diagonal (ij): $\nu_{\alpha} \rightarrow \nu_{s}$ $\nu_{\alpha} \rightarrow \nu_{\beta}$ (induced by LED)

Large Extra Dimensions The model

$$A\left(\nu_{\alpha}^{(0)} \to \nu_{\beta}^{(0)}; L\right) = \sum_{i,j,k} \sum_{N=0}^{\infty} U_{\alpha i} U_{\beta k}^{*} W_{ij}^{(0N)} W_{kj}^{(0N)} \exp\left(i\frac{\lambda_{j}^{(N)2}L}{2Ea^{2}}\right)$$

Almost diagonal (ij): $\nu_{\alpha} \rightarrow \nu_{s}$ $\nu_{\alpha} \rightarrow \nu_{\beta}$ (induced by LED)

LED effect ~ $\sum_{i} \xi_{i}^{2} |U_{\alpha i}|^{2}$ at first order in ξ_{i}^{2}

$$\xi_i^2 = 2 m_i^2 a^2 \sim 0.1 \Rightarrow a \sim 5 \,\mathrm{eV}^{-1} = 1 \,\mu m$$
$$\nu_e \rightarrow \nu_e \neq \nu_\mu \rightarrow \nu_\mu$$

Large Extra Dimensions Probability

Reactor experiments channel

Large Extra Dimensions Limits

Large Extra Dimensions for 8-2

$$M_D^{\delta+2} = \frac{M_{Pl}^2}{8\pi a^\delta}$$

PDG 2010 Hannestad, Raffelt PRD67 2003 Hannestad, Raffelt PRD69 2004

Large Extra Dimensions Discussion

Constraints from CHOOZ, KamLAND and MINOS: m₀=0, NH: a<0.75 (0.98) μm @ 90% (99%) CL m₀=0, IH: a<0.49 (0.57) μm@ 90% (99%) CL m₀=0.2 eV: a<0.10 (0.12) μm@ 90% (99%) CL

Large Extra Dimensions Discussion

Constraints from CHOOZ, KamLAND and MINOS: m_o=0, NH: a<0.75 (0.98) μm @ 90% (99%) CL m_o=0, IH: a<0.49 (0.57) μm@ 90% (99%) CL m_o=0.2 eV: a<0.10 (0.12) μm@ 90% (99%) CL

Although model dependent, our bounds for $\delta=2$, M_D > 22 TeV, are stronger than LHC bounds Francheschini et al 1101.4919

Large Extra Dimensions Discussion

Constraints from CHOOZ, KamLAND and MINOS: m_o=0, NH: a<0.75 (0.98) μm @ 90% (99%) CL m_o=0, IH: a<0.49 (0.57) μm@ 90% (99%) CL m_o=0.2 eV: a<0.10 (0.12) μm@ 90% (99%) CL

Although model dependent, our bounds for $\delta=2$, M_D > 22 TeV, are stronger than LHC bounds Francheschini et al 1101.4919

1101.0003: T2K and NOvA will not be able to significantly improve this limits. MINOS in NOvA era (MINOS+)?...

Large Extra Dimensions MINOS+

The Reactor

Antineutrino

Anomaly

Mueller *et al*, 1101.2663 Mention *et al*, PRD83 2011 PANM, Nunokawa, Pereira dos Santos, Zukanovich Funchal in preparation...

Reactor Antineutrino Anomaly A new analysis

The Reactor Antineutrino Anomaly

G. Mention,¹ M. Fechner,¹ Th. Lasserre,^{1,2,*} Th. A. Mueller,³ D. Lhuillier,³ M. Cribier,^{1,2} and A. Letourneau³

¹CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France

²Astroparticule et Cosmologie APC, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France

³CEA, Irfu, SPhN, Centre de Saclay, F-91191 Gif-sur-Yvette, France

(Dated: March 24, 2011)

Recently, <u>new reactor antineutrino spectra have been provided for ²³⁵U</u>, ²³⁹Pu, ²⁴¹Pu, and ²³⁸U, <u>increasing the mean flux by about 3 percent</u>. To a good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of published experiments at reactor-detector distances < 100 m leads to a ratio of observed event rate to predicted rate of 0.976 ± 0.024 . With our <u>new flux evaluation</u>, this ratio shifts to 0.943 ± 0.023 , leading to a deviation from unity at 98.6% C.L. which we call the reactor antineutrino anomaly. The compatibility of our results with the existence of a fourth non-standard neutrino state driving neutrino oscillations at short distances is discussed. The combined analysis of reactor data, gallium solar neutrino calibration experiments, and MiniBooNE- ν data disfavors the no-oscillation hypothesis at 99.8% C.L. The oscillation parameters are such that $|\Delta m_{new}^2| > 1.5 \text{ eV}^2$ (95%) and $\sin^2(2\theta_{new}) = 0.14 \pm 0.08$ (95%). Constraints on the θ_{13} neutrino mixing angle are revised.

Correlation between experiments Gallex ⁵¹Cr and Sage ⁵¹Cr and ³⁷Ar included MiniBooNE data do not contribute significantly PAN Machado - The reactor \bar{v} anomaly and LED

Reactor Antineutrino Anomaly A new analysis

Could the anomaly be due to LED effects?

PAN Machado - The reactor \overline{v} anomaly and LED

Reactor Antineutrino Anomaly Our analysis

Survival Probabilities with LED effect averaged over energy spectrum (reactor) or detection positions (Ga)

Reactor Antineutrino Anomaly Gallex/Sage and SBL reactors

PAN Machado - The reactor \overline{v} anomaly and LED

Reactor Antineutrino Anomaly Combined analysis

2.9 σ from a = 0

Reactor Antineutrino Anomaly Discussion

The anomaly could originate from a LED model

Double CHOOZ will help solving the anomaly

Again, MINOS+ could also contribute to solve it...

PAN Machado - The reactor \overline{v} anomaly and LED

EXTRA SLIDES

Reactor Antineutrino Anomaly Discussion

PAN Machado - The reactor \overline{v} anomaly and LED

Large Extra Dimensions MINOS+

Large Extra Dimensions The model

Decompose $\Psi^{\alpha}(x,y)$ in KK modes

$$\Psi^{\alpha}(x,y) = \frac{1}{\sqrt{2\pi a}} \sum_{N=-\infty}^{\infty} \psi^{\alpha(N)}(x) e^{iNy/a}$$
$$\nu_{L}^{\alpha(0)} = \psi_{L}^{\alpha(0)} \quad \nu_{L}^{\alpha(N)} = \frac{1}{\sqrt{2}} \left(\psi_{L}^{\alpha(N)} - \psi_{L}^{\alpha(-N)}\right)$$
$$\nu_{R}^{\alpha(0)} = \psi_{R}^{\alpha(0)} \quad \nu_{R}^{\alpha(N)} = \frac{1}{\sqrt{2}} \left(\psi_{R}^{\alpha(N)} + \psi_{R}^{\alpha(-N)}\right)$$

PAN Machado - The reactor $\overline{\nu}$ anomaly and LED

 $N = 1, \ldots, \infty$

Large Extra Dimensions The model

$$\mathcal{L}_{\text{mass}} = \sum_{\substack{\alpha,\beta=e,\mu,\tau}} \prod_{\substack{m=1\\ \alpha=e,\mu,\tau}}^{\uparrow} \left[\overline{\nu}_{L}^{\alpha} \nu_{R}^{\beta(0)} + \sqrt{2} \sum_{N=1}^{\infty} \overline{\nu}_{L}^{\alpha} \nu_{R}^{\beta(N)} \right] \\ + \sum_{\substack{\alpha=e,\mu,\tau}} \sum_{N=1}^{\infty} \frac{N}{a} \overline{\nu}_{L}^{\alpha(N)} \nu_{R}^{\alpha(N)} + \text{h.c.}$$
Size of extra dimension

Diagonalizing in flavor subspace

$$\nu_{\alpha R,\alpha L}^{(N)} = \sum R_{\alpha i} \, \nu_{iR,iL}^{(N)}$$

Ż

PAN Machado - The reactor \overline{v} anomaly and LED

 $\nu_{\alpha L}^{(0)} = \sum U_{\alpha i} \nu_{iL}^{(0)}$

 $\nu_{\alpha R}^{(0)} = \sum R_{\alpha i} \, \nu_{iR}^{(0)}$

Basics of v oscillations Parameters

Gonzalez-Garcia, Maltoni, Salvado 1001.4525
Mixing anglesMasses $\theta_{12} = 34, 4 \pm 1, 0^o$ $\Delta m_{21}^2 = 7, 59 \pm 0, 20 \times 10^{-5} \ eV^2$ $\theta_{23} = 42, 8(^{+4,7}_{-2,9})^o$ $\Delta m_{31}^2 = 2, 46 \pm 0, 12 \times 10^{-3} \ eV^2$ $\theta_{13} = 5, 6(^{+3,0}_{-2,7})^o$ $\Delta m_{31}^2 = -2, 36 \pm 0, 11 \times 10^{-3} \ eV^2$

$$*\delta_{CP} \in [0, 2\pi]$$

Large Extra Dimensions KamLAND

Large Extra Dimensions MINOS

Large Extra Dimensions Double CHOOZ

Reactor Antineutrino Anomaly Our analysis

PAN Machado - The reactor \overline{v} anomaly and LED

Reactor Antineutrino Anomaly Our analysis

