

Outline Observations: fermion masses and mixings Properties of the group D_{14} Quarks and D_{14} : prediction of θ_C (Blum/H ('09)) D_{14} also for leptons (H/Meloni (to appear)) Conclusions

		Mass at M_Z	in unite	s of $m_t(M_Z)$	
	u	$(1.7\pm0.4){ m MeV}$		λ^8	
	c	$(0.62\pm0.03){\rm GeV}$		λ^4	
	t	$(171\pm3){ m GeV}$		1	
		Mass at M_Z	in units	s of $m_b(M_Z)$	
	d	$(3.0\pm0.6){ m MeV}$		λ^4	
	s	$(54\pm8)\mathrm{MeV}$		λ^2	
	<u>b</u>	$(2.87\pm0.03){\rm GeV}$		1	
		Mass	at M_Z	in units of $m_{ au}(x)$	M_Z
e	(0.4865)	570161 ± 0.000000042	$2)\mathrm{MeV}$	$\lambda^{4\div5}$	
μ	(102	$.7181359 \pm 0.0000092$	$2)\mathrm{MeV}$	λ^2	
Г		$1.74624^{+0.000}_{-0.000}$	$^{20}_{10}{ m GeV}$	1	

.

. . .

.

• •

.

Observations: Fermion Masses and Mixings

- Mild hierarchy among light neutrino masses
 - Two known mass squared differences Δm^2_{21} and $|\Delta m^2_{31}|$ (2 σ)

 $\Delta m_{21}^2 = (7.59^{+0.44}_{-0.37}) \cdot 10^{-5} \text{ eV}^2 \text{ and } |\Delta m_{31}^2| = (2.40^{+0.24}_{-0.22}) \cdot 10^{-3} \text{ eV}^2$

Cosmological data give upper bound on m₀

$$\sum m_i \lesssim 0.7 \text{ eV}$$
 (2 σ)

• The bounds on m_{β} and $|m_{ee}|$ also constrain m_0

 $m_{\beta} \le 2.2 \,\mathrm{eV}$ and $|m_{ee}| \le (0.2...1) \,\mathrm{eV}$

Normal (NH) & inverted hierarchy (IH) still allowed

Observations: Fermion Masses and Mixings The mixing pattern is very peculiar $\sin^2(\theta_{12}^l) = 0.318^{+0.042}_{-0.028}$, $\sin^2(\theta_{23}^l) = 0.50^{+0.13}_{-0.11}$ and $\sin^2(\theta_{13}^l) \le 0.039$ $\theta_{12}^l = (34.3^{+2.5}_{-1.7})^\circ$, $\theta_{23}^l = (45.0^{+7.5}_{-6.4})^\circ$ and $\theta_{13}^l \le 11.4^\circ$ (2σ) compare to quark sector $\theta_{12}^q \approx 13^\circ$, $\theta_{23}^q \approx 2.4^\circ$ and $\theta_{13}^q \approx 0.21^\circ$

Observations: Fermion Masses and Mixings

The mixing pattern is very peculiar

 $\begin{aligned} \sin^2(\theta_{12}^l) &= 0.318^{+0.042}_{-0.028} , \quad \sin^2(\theta_{23}^l) = 0.50^{+0.13}_{-0.11} \quad \text{and} \quad \sin^2(\theta_{13}^l) \leq 0.039 \\ \theta_{12}^l &= (34.3^{+2.5}_{-1.7})^\circ , \quad \theta_{23}^l = (45.0^{+7.5}_{-6.4})^\circ \quad \text{and} \quad \theta_{13}^l \leq 11.4^\circ \quad (2\,\sigma) \end{aligned}$

compare to quark sector $\theta_{12}^q \approx 13^\circ$, $\theta_{23}^q \approx 2.4^\circ$ and $\theta_{13}^q \approx 0.21^\circ$

• One special mixing pattern: $\mu\tau$ symmetry

$$\sin^{2}(\theta_{23}^{l}) = \frac{1}{2}, \quad \sin^{2}(\theta_{13}^{l}) = 0$$
$$\Rightarrow U_{PMNS} = \begin{pmatrix} \cos(\theta_{12}^{l}) & \sin(\theta_{12}^{l}) & 0\\ -\frac{\sin(\theta_{12}^{l})}{\sqrt{2}} & \frac{\cos(\theta_{12}^{l})}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{\sin(\theta_{12}^{l})}{\sqrt{2}} & -\frac{\cos(\theta_{12}^{l})}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Group Theory of D_{14}

- D₁₄ belongs to the dihedral groups and is the symmetry group of a regular planar 14-gon
- Its order is 28, i.e. it has 28 distinct elements
- It has 4 + 6 real irred. reps., $\underline{1}_i$, i = 1, ..., 4 and $\underline{2}_i$, j = 1, ..., 6
- Generator relations of *D*₁₄

$$\mathbf{A}^{14} = \mathbb{1} \ , \ \mathbf{B}^2 = \mathbb{1} \ , \ \mathbf{A} \mathbf{B} \mathbf{A} = \mathbf{B}$$

Generators

Group Theory of D_{14}

- D₁₄ belongs to the dihedral groups and is the symmetry group of a regular planar 14-gon
- Its order is 28, i.e. it has 28 distinct elements
- It has 4 + 6 real irred. reps., $\underline{1}_i$, i = 1, ..., 4 and $\underline{2}_i$, j = 1, ..., 6
- Generator relations of *D*₁₄

$$\mathbf{A}^{14} = \mathbb{1} \ , \ \mathbf{B}^2 = \mathbb{1} \ , \ \mathbf{A} \mathbf{B} \mathbf{A} = \mathbf{B}$$

Generators

$$A = \begin{pmatrix} e^{\left(\frac{\pi i}{7}\right)j} & 0\\ 0 & e^{-\left(\frac{\pi i}{7}\right)j} \end{pmatrix}, B = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, j = 1, ..., 6$$

D₁₄ Quark Model

- Flavor group $G_F = D_{14} \times Z_3 \times U(1)_{FN}$
- Framework: MSSM
- Quarks transform non-trivially under G_F
- MSSM Higgs doublets $h_{u,d}$ are singlets under G_F
- Necessity of gauge singlets (flavons) transforming under G_F

 $\{\psi^{u}_{1,2}, \chi^{u}_{1,2}, \xi^{u}_{1,2}, \eta^{u}\}$ and $\{\psi^{d}_{1,2}, \chi^{d}_{1,2}, \xi^{d}_{1,2}, \eta^{d}, \sigma\}$

- FN field θ is only charged under $U(1)_{FN}$
- Structure of Yukawa couplings

$$\frac{\theta^2}{\Lambda^4} (Q_D u^c \chi^u \xi^u) h_u$$
 and $\frac{1}{\Lambda} Q_3 (b^c \eta^d) h_d$

Field	Q_D	Q_3	u^c	c^{c}	t^c	d^c	s^c	b^c	$h_{u,d}$
D_{14}	<u>2</u> 1	<u>1</u> 1	<u>1</u> 4	<u>1</u> 3	<u>1</u> 1	<u>1</u> 3	<u>1</u> 1	<u>1</u> 4	<u>1</u> 1
Z_3	1	1	1	1	1	ω^2	ω^2	ω^2	1
$U(1)_{FN}$	0	0	2	0	0	1	1	0	0

Field	$\psi^u_{1,2}$	$\chi^u_{1,2}$	$\xi^u_{1,2}$	η^u	$\psi^d_{1,2}$	$\chi^d_{1,2}$	$\xi^d_{1,2}$	η^d	σ	θ
D_{14}	<u>2</u> 1	<u>2</u> 2	<u>2</u> 4	<u>1</u> 3	<u>2</u> 1	<u>2</u> 2	<u>2</u> 4	<u>1</u> 4	<u>1</u> 1	<u>1</u> 1
Z_3	1	1	1	1	ω	ω	ω	ω	ω	1
$U(1)_{FN}$	0	0	0	0	0	0	0	0	0	-1

Leading Order in Up Quark Sector
(3)
$$Q_3 t^c h_u$$

 1ϕ
(13), (23) $\frac{1}{\Lambda}(Q_D\psi^u)t^c h_u$
(32) $\frac{1}{\Lambda}Q_3(c^c\eta^u)h_u$
 2ϕ
(11), (21) $\frac{\theta^2}{\Lambda^4}(Q_Du^c\chi^u\xi^u)h_u + \frac{\theta^2}{\Lambda^4}(Q_Du^c(\xi^u)^2)h_u + \frac{\theta^2}{\Lambda^4}(Q_D\psi^u\eta^u u^c)h_u$
(12), (22) $\frac{1}{\Lambda^2}(Q_Dc^c\chi^u\xi^u)h_u + \frac{1}{\Lambda^2}(Q_Dc^c(\xi^u)^2)h_u + \frac{1}{\Lambda^2}(Q_D\psi^u)(\eta^u c^c)h_u$

• • • Leading Order in Down Quark Sector

$$\begin{array}{c}
1\phi\\
(33) \quad \frac{1}{\Lambda}Q_3(b^c\eta^d)h_d\\
(32) \quad \frac{\theta}{\Lambda^2}Q_3 s^c\sigma h_d\\
(12), (22) \quad \frac{\theta}{\Lambda^2}(Q_D\psi^d) s^ch_d
\end{array}$$

• •

Vacuum Structure

Up quark sector $\langle \eta^u \rangle \neq 0$

$$\begin{pmatrix} \langle \psi_1^u \rangle \\ \langle \psi_2^u \rangle \end{pmatrix} = v^u \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} \langle \chi_1^u \rangle \\ \langle \chi_2^u \rangle \end{pmatrix} = w^u \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} \langle \xi_1^u \rangle \\ \langle \xi_2^u \rangle \end{pmatrix} = z^u \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Down quark sector $\langle \eta^d \rangle \neq 0$ and $\langle \sigma \rangle \neq 0$

$$\begin{pmatrix} \langle \psi_1^d \rangle \\ \langle \psi_2^d \rangle \end{pmatrix} = v^d \begin{pmatrix} e^{-\frac{\pi ik}{7}} \\ 1 \end{pmatrix}, \quad \begin{pmatrix} \langle \chi_1^d \rangle \\ \langle \chi_2^d \rangle \end{pmatrix} = w^d e^{\frac{\pi ik}{7}} \begin{pmatrix} e^{-\frac{2\pi ik}{7}} \\ 1 \end{pmatrix},$$
$$\begin{pmatrix} \langle \xi_1^d \rangle \\ \langle \xi_2^d \rangle \end{pmatrix} = z^d e^{\frac{2\pi ik}{7}} \begin{pmatrix} e^{-\frac{4\pi ik}{7}} \\ 1 \end{pmatrix}$$

Results for Quarks at Leading Order
Assume
$$\frac{\langle \Phi^u \rangle}{\Lambda} \approx \epsilon$$
, $\frac{\langle \Phi^d \rangle}{\Lambda} \approx \epsilon$, $t = \frac{\langle \theta \rangle}{\Lambda} \approx \epsilon \approx \lambda^2 \approx 0.04$
then \mathcal{M}_u and \mathcal{M}_d read

$$\mathcal{M}_u = \begin{pmatrix} -\alpha_1^u t^2 \epsilon^2 & \alpha_2^u \epsilon^2 & \alpha_3^u \epsilon \\ \alpha_1^u t^2 \epsilon^2 & \alpha_2^u \epsilon^2 & \alpha_3^u \epsilon \\ 0 & \alpha_4^u \epsilon & y_t \end{pmatrix} \langle h_u \rangle$$

$$\mathcal{M}_d = \begin{pmatrix} 0 & \alpha_1^d t \epsilon & 0 \\ 0 & \alpha_1^d e^{-\pi i k/7} t \epsilon & 0 \\ 0 & \alpha_2^d t \epsilon & y_b \epsilon \end{pmatrix} \langle h_d \rangle$$

.

• •

• •

Results for Quarks at Leading OrderQuark Masses
$$m_u^2: m_c^2: m_t^2 \sim \epsilon^8: \epsilon^4: 1, m_d^2: m_s^2: m_b^2 \sim 0: \epsilon^2: 1, m_b^2: m_t^2 \sim \epsilon^2: 1$$
 for small $\tan \beta$ CKM matrix $|V_{CKM}| = \begin{pmatrix} |\cos(\frac{k\pi}{14})| & |\sin(\frac{k\pi}{14})| & 0\\ |\sin(\frac{k\pi}{14})| & |\cos(\frac{k\pi}{14})| & 0\\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & \mathcal{O}(\epsilon^4) & \mathcal{O}(\epsilon^2)\\ \mathcal{O}(\epsilon^2) & \mathcal{O}(\epsilon^2) & \mathcal{O}(\epsilon)\\ \mathcal{O}(\epsilon) & \mathcal{O}(\epsilon) & \mathcal{O}(\epsilon^2) \end{pmatrix}$ \Downarrow $k = 1$ or $k = 13$ leads to $|V_{ud}| \approx 0.97493$ Experimental value: $|V_{ud}|_{exp} = 0.97419^{+0.00022}_{-0.00022}$

• •

•

Completion: Add Leptons (н/л	Neloni (to appear))
<u>Goals</u> :	
 Add leptons in minimal way 	
• Predict μau symmetry in the lepton sector	
 Do not disturb quark sector 	

• •

Completion: Add Leptons (H/Meloni (to appear)) Goals : Add leptons in minimal way Predict $\mu\tau$ symmetry in the lepton sector Do not disturb quark sector **Solution** au^c Field ν_D^c L_1 L_D e^{c} μ^{c} ν_1^c $\chi^e_{1,2}$ D_{14} <u>2</u>3 <u>2</u>2 <u>2</u>2 <u>1</u>3 <u>1</u>1 <u>1</u>1 <u>1</u>1 <u>1</u>2 ω_7^2 ω_7^5 ω_7^5 ω_7^5 ω_7^4 ω_7^4 Z_7 1 1

Neutrino Sector

Dirac neutrino mass matrix

$$\begin{array}{ccc}
1 \phi \\
12), (13) & \frac{1}{\Lambda} (L_1 \nu_D^c \boldsymbol{\xi^u}) h_u \\
21), (31) & \frac{1}{\Lambda} (L_D \nu_1^c \boldsymbol{\chi^u}) h_u \\
23), (32) & \frac{1}{\Lambda} (L_D \nu_D^c \boldsymbol{\psi^u}) h_u
\end{array}$$

leads to

$$\mathcal{M}_{\nu}^{D} = \begin{pmatrix} 0 & \alpha_{1}^{D} & \alpha_{1}^{D} \\ \alpha_{2}^{D} & 0 & \alpha_{3}^{D} \\ -\alpha_{2}^{D} & \alpha_{3}^{D} & 0 \end{pmatrix} \epsilon \langle h_{u} \rangle$$

Neutrino Sector

Light neutrino mass matrix

$$\mathcal{M}_{\nu} = \begin{pmatrix} 2x^2/v & x & x \\ x & z & v-z \\ x & v-z & z \end{pmatrix} \epsilon \langle h_u \rangle^2 / \Lambda$$

• $\mu\tau$ symmetric neutrino mixing

- θ_{12}^{ν} is given by $\tan(\theta_{12}^{\nu}) = \sqrt{2} \left| \frac{x}{v} \right|$
- Normal ordering with $m_1 = 0$ is predicted and

$$m_2^2 = \frac{(|v|^2 + 2|x|^2)^2}{|v|^2} \left(\frac{\epsilon \langle h_u \rangle^2}{\Lambda}\right)^2 \quad , \quad m_3^2 = |v - 2z|^2 \left(\frac{\epsilon \langle h_u \rangle^2}{\Lambda}\right)^2$$

• Additional relation $|m_{ee}| = m_2 \sin^2(\theta_{12}^{\nu}) = \sqrt{\Delta m_{21}^2} \sin^2(\theta_{12}^{\nu})$

Charged Lepton Sector

Alignment of new flavon $\chi^e_{1,2}$

$$\left(\begin{array}{c} \langle \chi_1^e \rangle \\ \langle \chi_2^e \rangle \end{array}\right) = v^e \left(\begin{array}{c} 1 \\ 0 \end{array}\right)$$

for which just one additional driving field σ^{0e} is needed

$$w_{f,l} = a_l \,\sigma^{0e} \,\chi_1^e \,\chi_2^e$$

Nota bene: Also this alignment preserves a Z_2 subgroup of D_{14} , because $\underline{2}_2$ is unfaithful.

Yukawa Operators for Charged Leptons 1ϕ $(3\alpha) \qquad \frac{1}{\Lambda} (L_D \chi^e) \, \alpha^c \, h_d$ 2ϕ $(2\alpha) \qquad \frac{1}{\Lambda^2} (L_D \chi^e \boldsymbol{\xi^u}) \, \alpha^c \, h_d$ 3ϕ (1 α) $\frac{1}{\Lambda^3} (L_1 \chi^e \psi^u \xi^u) \alpha^c h_d$ $(1\alpha) \qquad \frac{1}{\Lambda^3} (L_1 \eta^u) (\chi^e \chi^u) \alpha^c h_d$

Charged Lepton Mass Matrix

For $\frac{v^e}{\Lambda} \approx \epsilon \approx \lambda^2$ we get

$$\mathcal{M}_{e} = \begin{pmatrix} \alpha_{1}^{e} \epsilon^{3} & \alpha_{2}^{e} \epsilon^{3} & \alpha_{3}^{e} \epsilon^{3} \\ \alpha_{4}^{e} \epsilon^{2} & \alpha_{5}^{e} \epsilon^{2} & \alpha_{6}^{e} \epsilon^{2} \\ \alpha_{7}^{e} \epsilon & \alpha_{8}^{e} \epsilon & \alpha_{9}^{e} \epsilon \end{pmatrix} \langle h_{d} \rangle$$

- Charged lepton masses $m_e: m_\mu: m_\tau \sim \epsilon^2: \epsilon: 1$
- Charged lepton mixing angles $\theta_{12}^e \sim \epsilon$, $\theta_{13}^e \sim \epsilon^2$, $\theta_{23}^e \sim \epsilon$

Lepton mixings are nearly $\mu\tau$ symmetric

$$\sin^2(\theta_{23}^l) = \frac{1}{2} + \mathcal{O}(\epsilon) , \ \sin(\theta_{13}^l) = \mathcal{O}(\epsilon) , \ \sin^2(\theta_{12}^l) = \mathcal{O}(1)$$

Conclusions

- *D*₁₄ for quarks and leptons through minimal extension of the existing quark model
- Prediction of Cabibbo angle and now also of $\mu\tau$ symmetry in lepton sector
- Other mixing angles naturally of correct size
- All fermion mass hierarchies are explained
- Normal ordering in the neutrino sector with $m_1 = 0$ at leading order

Thanks.