Lepton flavor violation at the LHC in supersymmetric type I seesaw

A. Villanova del Moral

LUPM - Laboratoire Univers et Particules de Montpellier CNRS - Centre National de la Recherche Scientifique Université de Montpellier 2

(Work in progress)

PLANCK 2011, 30 May - 3 June 2011, Lisboa

Outline

Outline

2 Theoretical setup

3 Numerical calculations

Experimental neutrino data

Neutrino oscillations

Neutrino masses

[K. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021 (2010)]

A. Villanova del Moral LFV at the LHC in SUSY type I seesaw

Seesaw mechanism

- $\hat{\nu}_L$ mix with very heavy states ($M_{
 m SS} \sim 10^{14} {
 m GeV}$)
- After integrating out the heavy states,

$$W_{
m eff} \supset -rac{1}{4}rac{c^{ij}}{M_{
m SS}}(\hat{L}_i\hat{H}_u)(\hat{L}_j\hat{H}_u)$$

light neutrino masses are supressed by $M_{\rm SS}^{-1}$

Canonical SUSY type I seesaw

• Particle content

MSSM + $3\hat{\nu}_i^c$

Canonical SUSY type I seesaw

• Superpotential

$$W=W_{ ext{MSSM}}+Y^{ji}_{
u}\hat{L}_i\hat{
u}^c_j\hat{H}_u+rac{1}{2}M^{ij}_R\hat{
u}^c_i\hat{
u}^c_j$$

where

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \\ Y_{\nu}^{31} & Y_{\nu}^{32} & Y_{\nu}^{33} \end{pmatrix} \qquad M_{R} = \begin{pmatrix} M_{1} & 0 & 0 \\ 0 & M_{2} & 0 \\ 0 & 0 & M_{3} \end{pmatrix}$$

Testability

- Impossible direct tests: $M_R \sim 10^{14}~{
 m GeV}$
- Only indirect tests: LFV and SUSY particle masses

Testability

- Impossible direct tests: $M_R \sim 10^{14}~{
 m GeV}$
- Only indirect tests: LFV and SUSY particle masses

Predictivity

• Too many parameters: (9,6) + (3,0) = (12,6) = 18

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \\ Y_{\nu}^{31} & Y_{\nu}^{32} & Y_{\nu}^{33} \end{pmatrix} \qquad M_{R} = \begin{pmatrix} M_{1} & 0 & 0 \\ 0 & M_{2} & 0 \\ 0 & 0 & M_{3} \end{pmatrix}$$

Testability

- Impossible direct tests: $M_R \sim 10^{14}~{
 m GeV}$
- Only indirect tests: LFV and SUSY particle masses

Predictivity

• Too many parameters: (9,6) + (3,0) = (12,6) = 18

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \\ Y_{\nu}^{31} & Y_{\nu}^{32} & Y_{\nu}^{33} \end{pmatrix} \qquad M_{R} = \begin{pmatrix} M_{1} & 0 & 0 \\ 0 & M_{2} & 0 \\ 0 & 0 & M_{3} \end{pmatrix}$$

- Possible solutions
 - Simplifying assumptions about neutrino scenarios
 - Additional flavor symmetries
 - 2RHN

Testability

- Impossible direct tests: $M_R \sim 10^{14}~{
 m GeV}$
- Only indirect tests: LFV and SUSY particle masses

Predictivity

• Too many parameters: (9,6) + (3,0) = (12,6) = 18

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \\ Y_{\nu}^{31} & Y_{\nu}^{32} & Y_{\nu}^{33} \end{pmatrix} \qquad M_{R} = \begin{pmatrix} M_{1} & 0 & 0 \\ 0 & M_{2} & 0 \\ 0 & 0 & M_{3} \end{pmatrix}$$

- Possible solutions
 - Simplifying assumptions about neutrino scenarios
 - Additional flavor symmetries
 - 2RHN

Outline

2RHN SUSY type I seesaw

• Particle content

MSSM + $2\hat{\nu}_i^c$

2RHN SUSY type I seesaw

• Superpotential

$$W = W_{ ext{MSSM}} + Y^{ji}_{
u} \hat{L}_i \hat{
u}^c_j \hat{H}_u + rac{1}{2} M^{ij}_R \hat{
u}^c_i \hat{
u}^c_j$$

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \end{pmatrix} \qquad M_{R} = \begin{pmatrix} M_{1} & 0 \\ 0 & M_{2} \end{pmatrix}$$

2RHN SUSY type I seesaw

• Superpotential

$$W=W_{ ext{MSSM}}+Y^{ji}_{
u}\hat{L}_i\hat{
u}^c_j\hat{H}_u+rac{1}{2}M^{ij}_R\hat{
u}^c_i\hat{
u}^c_j$$

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \end{pmatrix} \qquad M_{R} = \begin{pmatrix} M_{1} & 0 \\ 0 & M_{2} \end{pmatrix}$$

• At low energies

$$m_{
u}^{\mathrm{eff}}\simeq-rac{v_{u}^{2}}{2}\ Y_{
u}^{T}\cdot M_{R}^{-1}\cdot Y_{
u}$$

2RHN SUSY type I seesaw

• Superpotential

$$W=W_{ ext{MSSM}}+Y^{ji}_{
u}\hat{L}_i\hat{
u}^c_j\hat{H}_u+rac{1}{2}M^{ij}_R\hat{
u}^c_i\hat{
u}^c_j$$

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \end{pmatrix} \qquad M_{R} = \begin{pmatrix} M_{1} & 0 \\ 0 & M_{2} \end{pmatrix}$$

• At low energies

$$m_{
u}^{\text{eff}}\simeq-rac{\mathbf{v}_{u}^{2}}{2}\ \mathbf{Y}_{
u}^{T}\cdot \mathbf{M}_{R}^{-1}\cdot \mathbf{Y}_{
u}$$

• rank
$$(m_{\nu}^{\text{eff}}) = 2$$

• 1 zero-eigenvalue
• SNH $(m_1 = 0)$ or SIH $(m_3 = 0)$

Parametrization of 2RHN SUSY type I seesaw

High energy

$$(6,3) + (2,0) = (8,3) = 11$$
$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \end{pmatrix}$$
$$M_{R} = \operatorname{diag}(M_{1}, M_{2})$$

Parametrization of 2RHN SUSY type I seesaw

High energy

$$(6,3) + (2,0) = (8,3) = 11$$
$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \end{pmatrix}$$

 $M_R = \operatorname{diag}(M_1, M_2)$

Low energy

$$(2,0) + (3,2) = (5,2) = 7$$

$$m = \begin{cases} \operatorname{diag}(0, m_2, m_3) & \operatorname{SNH} \\ \operatorname{diag}(m_1, m_2, 0) & \operatorname{SIH} \end{cases}$$
$$U = U(\theta_{ij}, \delta, \alpha)$$

Parametrization of 2RHN SUSY type I seesaw

High energy

$$(6,3)+(2,0)=(8,3)=11$$

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \end{pmatrix}$$
$$M_{R} = \text{diag}(M_{1}, M_{2})$$

Low energy

$$(2,0) + (3,2) = (5,2) = 7$$

$$m = \begin{cases} \operatorname{diag}(0, m_2, m_3) & \operatorname{SNH} \\ \operatorname{diag}(m_1, m_2, 0) & \operatorname{SIH} \\ U = U(\theta_{ij}, \delta, \alpha) \end{cases}$$

Parametrization

• Low energy: *m*, *U* (θ_{ij} , δ , α)

$$(5,2) = 7$$

Parametrization of 2RHN SUSY type I seesaw

High energy

$$(6,3) + (2,0) = (8,3) = 11$$

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \\ M_{R} = \text{diag}(M_{1}, M_{2}) \end{pmatrix}$$

Low energy

$$(2,0) + (3,2) = (5,2) = 7$$

$$m = \begin{cases} \operatorname{diag}(0, m_2, m_3) & \operatorname{SNH} \\ \operatorname{diag}(m_1, m_2, 0) & \operatorname{SIH} \\ U = U(\theta_{ij}, \delta, \alpha) \end{cases}$$

- Low energy: *m*, *U* (θ_{ij} , δ , α)
- High energy: M

$$(5,2) = 7$$

 $(2,0) = 2$

Parametrization of 2RHN SUSY type I seesaw

High energy

$$(6,3) + (2,0) = (8,3) = 11$$

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \end{pmatrix}$$
$$M_{R} = \text{diag}(M_{1}, M_{2})$$

Low energy

$$(2,0) + (3,2) = (5,2) = 7$$

$$m = \begin{cases} \operatorname{diag}(0, m_2, m_3) & \operatorname{SNH} \\ \operatorname{diag}(m_1, m_2, 0) & \operatorname{SIH} \\ U = U(\theta_{ij}, \delta, \alpha) \end{cases}$$

- Low energy: *m*, *U* (θ_{ij} , δ , α)
- High energy: M

•
$$R = R(\theta_R = \text{Re}(\theta_R) + i\text{Im}(\theta_R))$$

$$(5,2) = 7$$

 $(2,0) = 2$
 $(1,1) = 2$

Parametrization of 2RHN SUSY type I seesaw

High energy

$$(6,3) + (2,0) = (8,3) = 11$$

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \\ M_{R} = \text{diag}(M_{1}, M_{2}) \end{pmatrix}$$

Low energy

$$(2,0) + (3,2) = (5,2) = 7$$

$$m = \begin{cases} \operatorname{diag}(0, m_2, m_3) & \operatorname{SNH} \\ \operatorname{diag}(m_1, m_2, 0) & \operatorname{SIH} \\ U = U(\theta_{ij}, \delta, \alpha) \end{cases}$$

• Low end	(5,2) = 7			
• High en	(2,0) = 2			
• $R = R(\theta_R = \operatorname{Re}(\theta_R) + i\operatorname{Im}(\theta_R))$				(1,1) = 2
$R = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\cos(heta_R) \ -\sin(heta_R)$	$ \sigma_R \sin(\theta_R) \\ \sigma_R \cos(\theta_R) $	where $\sigma_R=\pm 1$	SNH

Parametrization of 2RHN SUSY type I seesaw

High energy

$$(6,3) + (2,0) = (8,3) = 11$$

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \end{pmatrix}$$
$$M_{R} = \text{diag}(M_{1}, M_{2})$$

Low energy

$$(2,0) + (3,2) = (5,2) = 7$$

$$m = \begin{cases} \operatorname{diag}(0, m_2, m_3) & \operatorname{SNH} \\ \operatorname{diag}(m_1, m_2, 0) & \operatorname{SIH} \\ U = U(\theta_{ij}, \delta, \alpha) \end{cases}$$

• Low energy: <i>m</i> , <i>U</i> (θ_{ij} , δ , α)		(5,2) = 7	
• High energy: <i>M</i>		(2,0) = 2	
• $R = R(\theta_R = \operatorname{Re}(\theta_R) + i\operatorname{Im}(\theta_R))$			(1, 1) = 2
$R = \begin{pmatrix} \cos(\theta_R) & \sigma_R \sin(\theta_R) \\ -\sin(\theta_R) & \sigma_R \cos(\theta_R) \end{pmatrix}$	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	SIH	

Parametrization of 2RHN SUSY type I seesaw

High energy

$$(6,3) + (2,0) = (8,3) = 11$$

$$Y_{\nu} = \begin{pmatrix} Y_{\nu}^{11} & Y_{\nu}^{12} & Y_{\nu}^{13} \\ Y_{\nu}^{21} & Y_{\nu}^{22} & Y_{\nu}^{23} \end{pmatrix}$$
$$M_{R} = \text{diag}(M_{1}, M_{2})$$

Low energy

$$(2,0) + (3,2) = (5,2) = 7$$

$$m = \begin{cases} \operatorname{diag}(0, m_2, m_3) & \operatorname{SNH} \\ \operatorname{diag}(m_1, m_2, 0) & \operatorname{SIH} \\ U = U(\theta_{ij}, \delta, \alpha) \end{cases}$$

(5,2) = 7(2,0) = 2

- Low energy: $m, U(\theta_{ij}, \delta, \alpha)$
 - High energy: M

•
$$R = R(\theta_R = \operatorname{Re}(\theta_R) + i\operatorname{Im}(\theta_R))$$
 $(1,1) = 2$

$$Y_{
u} = i rac{\sqrt{2}}{v_u} \operatorname{diag}(\sqrt{M}) \cdot R \cdot \operatorname{diag}(\sqrt{m}) \cdot U^{\dagger}$$

Lepton flavor violation

- Small mixing angle approximation
- Neglecting *L*-*R* mixing
- mSugra boundary conditions

$$\begin{aligned} \mathsf{BR}_{ij} \propto |(\underline{Y}_{\nu}^{\dagger} \cdot L \cdot \underline{Y}_{\nu})_{ij}|^{2} \\ \mathsf{BR}_{ij} \propto \left| U_{i\alpha}^{*} U_{j\beta} \sqrt{m_{\alpha}} \sqrt{m_{\beta}} R_{k\alpha}^{*} R_{k\beta} M_{k} \log \left(\frac{M_{X}}{M_{k}}\right) \right|^{2} \end{aligned}$$

Trick: Ratio of BR's

$$\begin{split} \frac{\mathsf{BR}_{i_{1}j_{1}}}{\mathsf{BR}_{i_{2}j_{2}}} &\simeq \frac{\left| U_{i_{1}\alpha_{1}}^{*} U_{j_{1}\beta_{1}} \sqrt{m_{\alpha_{1}}} \sqrt{m_{\beta_{1}}} R_{k_{1}\alpha_{1}}^{*} R_{k_{1}\beta_{1}} M_{k_{1}} \log\left(\frac{M_{x}}{M_{k_{1}}}\right) \right|^{2}}{\left| U_{i_{2}\alpha_{2}}^{*} U_{j_{2}\beta_{2}} \sqrt{m_{\alpha_{2}}} \sqrt{m_{\beta_{2}}} R_{k_{2}\alpha_{2}}^{*} R_{k_{2}\beta_{2}} M_{k_{2}} \log\left(\frac{M_{x}}{M_{k_{2}}}\right) \right|^{2}} \\ &\equiv (r_{i_{2}j_{2}}^{i_{1}j_{1}})^{2} \end{split}$$

Case-1: TBM + Degenerate ν_R + Real θ_R

The same dependence as is 3RHN: m

SNH

$$(r_{31}^{21})^{2} = 1$$

$$(r_{32}^{21})^{2} = (r_{32}^{31})^{2}$$

$$= \left(\frac{2\sqrt{\frac{\Delta_{s}}{|\Delta_{A}|}}}{3 - 2\sqrt{\frac{\Delta_{s}}{|\Delta_{A}|}}}\right)^{2}$$

$$= 0.018$$

$$= [0.015, 0.022]$$
SIH

$$(r_{31}^{21})^{2} = 1$$

$$(r_{32}^{21})^{2} = (r_{32}^{31})^{2}$$

$$= \left(\frac{2\sqrt{1 + \frac{\Delta_{s}}{|\Delta_{A}|}} - 2}{2\sqrt{1 + \frac{\Delta_{s}}{|\Delta_{A}|}} + 1}\right)$$

$$= 1.1 \times 10^{-4}$$

$$= [0.78, 1.6] \times 10^{-4}$$

2

Case-2: TBM + Degenerate ν_R + Complex θ_R

More constrained than in 3RHN: *m* and $Im(\theta_R)$

$$R^{\dagger} \cdot R \supset \begin{pmatrix} \cosh(2\operatorname{Im}(\theta_R)) & i\sigma_R \sinh(2\operatorname{Im}(\theta_R)) \\ -i\sigma_R \sinh(2\operatorname{Im}(\theta_R)) & \cosh(2\operatorname{Im}(\theta_R)) \end{pmatrix}$$

Case-2: TBM + Degenerate ν_R + Complex θ_R

SNH

$$(r_{31}^{21})^2 = 1$$

 $(r_{32}^{21})^2 = (r_{32}^{31})^2$
 $= [0.018, 0.105)$
 $= [0.014, 0.114]$

SIH

$$(r_{31}^{21})^2 = 1$$

$$(r_{32}^{21})^2 = (r_{32}^{31})^2$$

$$= [1.13 \times 10^{-4} \ 2]$$

$$= [7.8 \times 10^{-5}, \ 2]$$

Other cases

- Departure from TBM: dependence on θ_{ij} , δ
- Departure from degenerate ν_R : dependence on M_i
- Dependence on R

Outline

2 Theoretical setup

3 Numerical calculations

Software

- \bullet Implementation of 2RHN in $\rm SPHENO3.1.2$
- mSugra boundary conditions
- Iteratively fit of light neutrino masses

Case-2: TBM + Degenerate ν_R + Complex θ_R

• mSugra point:

$$(m_0,\ m_{1/2})=(350,\ 700)$$
 GeV, $A_0=0$ GeV, tan $eta=10,\ \mu>0$

- $M = 10^{10} \text{ GeV}$
- $\max(\operatorname{Im}(\theta_R)) \Rightarrow$ renormalizable Y_{ν}

Case-2: TBM + Degenerate ν_R + Complex θ_R

• mSugra point:

$$(m_0, m_{1/2}) = (350, 700)$$
 GeV, $A_0 = 0$ GeV, $\tan \beta = 10$, $\mu > 0$

- $M = 10^{10} \, {
 m GeV}$
- $\max(\operatorname{Im}(\theta_R)) \Rightarrow$ renormalizable Y_{ν}

Case-2: TBM + Degenerate ν_R + Complex θ_R

• mSugra point:

$$(m_0, m_{1/2}) = (350, 700)$$
 GeV, $A_0 = 0$ GeV, $\tan \beta = 10$, $\mu > 0$

- $M = 10^{10} \, {
 m GeV}$
- $\max(\operatorname{Im}(\theta_R)) \Rightarrow$ renormalizable Y_{ν}

Outline

2 Theoretical setup

3 Numerical calculations

Summary

- Neutrino data
 - Neutrinos have little masses
 - Neutrinos mix
- Neutrino mass generation: 2RHN SUSY type I seesaw ⊂ 3RHN
- mSUGRA: LFV decays are related to neutrino parameters
- Study falsifiability of 2RHN SUSY type I seesaw