A possible connection between neutrino mass generation and the lightness of a NMSSM **pseudoscalar**

Debottam Das

Laboratoire de Physique Theorique ^d**'**Orsay

Talk presented at **:** PLANCK ²⁰¹¹ (IST, LISBOA)

Ref: arXiv**:1011.5037 (Physics Letters ^B ⁷⁰⁰ (2011) pp. 351-355)**

(Asmaa Abada, Gautam Bhattacharyya, ^C**^é**dric Weiland**)**

Motivation & Plan

- NMSSM can offer a very light pseudo-scalar Higgs boson A_1 \Rightarrow interesting phenomenology related to
	- Higgs physics
	- dark matter annihilations
- Strong constraints coming from <mark>Upsilon decays, B physics</mark> and accelerator bounds
- Proposing ^a definite model for neutrino mass generation in NMSSM, we reanalyze the status of all those <mark>experimental constraints</mark>

More specifically :

Can we evade the experimental constraints which are otherwise very stringent ?

Superpotential:

 $W_{\text{MSSM}} = \overline{\mathfrak{u}} \mathfrak{y}_{\mathfrak{u}}\operatorname{QH}_{\mathfrak{u}} - \mathrm{d}\mathfrak{y}_{\mathfrak{d}}\operatorname{QH}_{\mathfrak{d}} - \overline{e} \mathfrak{y}_{e}\operatorname{LH}_{\mathfrak{d}} + \mu \mathrm{H}_{\mathfrak{u}}\operatorname{H}_{\mathfrak{d}}$

 H_u , H_d , Q, L, \overline{u} , d , $\overline{e} \Rightarrow$ chiral superfields

 \Rightarrow Provides all Yukawa interactions in SM

 \Rightarrow $\mathbf{y_{u}}$, $\mathbf{y_{d}}$, $\mathbf{y_{e}}$ are the dimensionless Yukawa couplings \Rightarrow 3 \times 3 matrices in family
analog space

Proper SUSY phenomenology requires

- $\bullet\ \mu << M_{\text{P}}\left(\textsf{Plank scale}\right), \textsf{M}_\textsf{G}\left(\textsf{Gut scale}\right)$
- \bullet And, $\mu > 100$ GeV $\,$ (From LEP limit on chargino mass)

 \Rightarrow µ \sim $M_{\rm SUSY} \sim$ TeV is required

The so-called μ problem in ${\rm MSSM}$

NMSSM

An elegant way to solve this problem is by introducing an additional singlet superfield S with a coupling $\lambda \mathrm{SH}_\mathrm{u} \, \mathrm{H}_\mathrm{d}$ in the superpotential \Rightarrow

 $W_{\text{NMSSM}} = \lambda \text{SH}_{\text{u}} \, \text{H}_{\text{d}} + \frac{\text{k}}{3} \, \text{S}^3 + \dots \, (\text{Z}_3 \text{ invariant superpotential})$

The VEV $\mathsf{\underline{v_S}}$ of the real scalar component of $\mathsf{\underline{S}}$ generates

 $\Rightarrow \mu_{eff} = \lambda v_S \Rightarrow \mu_{eff} \sim M_{SUSY}$

This is known as Next-to-Minimal Supersymmetric Standard Model (NMSSM)

Simplest SUSY standard model with M_{SUSY} as the only scale in the Lagrangian

The SM singlet scalar $S \Rightarrow \;\;$ can leave the footprints only in the neutral Higgs sector
and in the neutraline sector and in the neutralino sector \Rightarrow

- Neutralinos $\chi^0_{\mathfrak{t}}$, $\mathfrak{i} = 1 \ldots 5,$ \Rightarrow mixtures of the $\mathrm{\tilde{B}}$ $\mathrm{\tilde{B}}$, $\mathrm{\tilde{W}}$ $\tilde{\mathcal{V}}$, $\tilde{\mathsf{H}}$ $\tilde{\mathcal{H}}_{\mathfrak{u}},\,\tilde{\mathsf{H}}$ $\tilde{\mathsf{H}}_\text{d}$ and $\tilde{\mathsf{S}}$
- 3 CP-even neutral Higgs bosons H_{i} $(\mathrm{H_{1}}$, $\mathrm{H_{2}}$, $\mathrm{H_{3}})$ $\rm H_1$ is the lightest $\rm CP$ -even Higgs boson
- 2 CP-odd neutral Higgs bosons A_1 and A_2 $(A_2 \simeq A_{MSSM})$

 \Rightarrow The lightest pseudoscalar \mathcal{A}_1 can be very light

Recent analysis shows that $m_{A_{1}} > 210$ MeV

Ref: S. Andreas, O. Lebedev, S. Ramos-Sanchez and A. Ringwald, JHEP 1008 (2010) 003

Higgs Physics:

The interest of a light \mathcal{A}_1 is that *it provides a new and dominant decay channel for the lightest* Higgs boson ^h [⇒] **LEP search strategy does not work !**

 $h \to A_1 A_1 \to 4f$ final state ! where $A_1 \to 2\mu, 2\tau, 2b$

• Particular interest is in the zone when $m_{A_{1}}$ < 10 GeV \Rightarrow Allows to accommodate *lightest CP-even Higgs mass* $\, \mathrm{m_{h}} \sim 95-105 \, \text{GeV}$

Blessings for **light DM:**

- Lightest neutralino ($\simeq \,{\rm \vec{B}},$ $\tilde{\mathtt{B}}$, $\tilde{\mathtt{S}}$ \Rightarrow ideal candidate for DM S) can be very light ($\simeq 5-10$ G $e\rm{V}$)
- WMAP constraint is satisfied via CP-odd Higgs (A_1) exchange $\Rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow A_1^*/A_1 \rightarrow f\bar{f}$

A1 **: What makes it** so light

In general

$$
A_1 = \cos \theta_A A_{MSSM} + \sin \theta_A S_I
$$

- \bullet \mathcal{A}_{MSSM} is the doublet like CP-odd scalar in the MSSM sector of the NMSSM
- \bullet \mathcal{S}_{I} represents the pseudoscalar component of the singlet scalar in the NMSSM
- Phenomenology related to A_1 is principally governed by its couplings to the SM fermions \Rightarrow includes the doublet component ($\cos\theta_{\rm A}$) only

$$
\mathcal{L}_{A f \bar{f}} \equiv C_{A f \bar{f}} \frac{ig_2 m_f}{2 m_W} \bar{f} \gamma_5 f A,
$$

•
$$
C_{A_1\mu^{-}\mu^{+}} = C_{A_1\tau^{-}\tau^{+}} = C_{A_1b\bar{b}} = X_d = \cos\theta_A \tan\beta
$$
, $(\tan\beta = v_u/v_d)$

•
$$
C_{A_1 t\bar{t}} = C_{A_1 c\bar{c}} = \cos \theta_A \cot \beta
$$

However, light or ultra-light CP-odd scalars are highly constrained viaUpsilon decays, B physics and collider searches

Most of these constraints *exploit* the A_1 f \bar{f} coupling \Rightarrow thus couples via $\cos \theta_A$ only

Constraint on the ^A¹ **mass : Upsilon & ^B ^physics**

Domingo et.al. JHEP 0901:061,2009

• $\Upsilon(ns) \equiv b\bar{b} \pmod{m\gamma} \geq 9.46 \text{ GeV} \Rightarrow \Upsilon \rightarrow$ γ + X searched in B-factories like BaBar,
QLEQ CLEO..

• $\Upsilon \rightarrow \gamma + A_1$ followed by $A_1 \rightarrow$ $\tau^+\tau^-,~\mu^+\mu^-\Rightarrow$ visible if A_1 is quite light $({\rm A_1\leq 10\,GeV})$

• ^B physics constraints :

$$
\Rightarrow \Delta M_s, \Delta M_d \ (\equiv m_{\tilde{B}_{s,d}} - m_{B_{s,d}})
$$

$$
\Rightarrow \text{Br}(B_s \rightarrow \mu^+ \mu^-)
$$

STRINGENT bounds on $m_{A_{1}}$ and in particular on X_d

Light ^A¹ **: Other constraints**

- ALEPH collaboration reanalysed of LEP-2 data for $\rm h \rightarrow A_1A_1 \rightarrow 4\tau$ final states (relevant for $\rm m_{A_{1}} < 2m_b$)
- D0 collaboration (Fermilab Tevatron) analyzed $h \to A_1 A_1 \to 4\mu$ mode (relevant for $m_{A_{1}} < 2m_{\tau}$):
- Similarly, other searches in this direction are :
	- $h \rightarrow A_1A_1 \rightarrow 4b$, gg, cc̃, $\tau^+\tau^-$, $\mu^+\mu^-\tau^+\tau^-$
	- \Rightarrow Again constrain on the $\mathrm{Br}(\mathcal{A}_1\to\mathrm{f}\bar{\mathrm{f}})$ and X_{d}

SUMMARY :

\bf{Light} **P E** \bf{Light} **P E** \bf{Light} **P** \bf{Light} **P** \bf{Light} \bf{L} \bf{L}

- Neutrinos are massless in the NMSSM
- Previous studies :
	- $\bullet\;$ RpV-NMSSM $\Rightarrow\;$ not compatible with DM motivation
	- \bullet RpC-NMSSM \Rightarrow introducing \mathcal{N}_t to the NMSSM field content \Rightarrow f^v \sim 10^{−6}
- We propose an extension of the NMSSM with two additional gauge singlets carrying lepton numbers :
	- ⇒ The so called <u>'inverse seesaw'</u> mechanism

Features

- •• Singlet neutrinos can be very light (few GeV)
- $\bullet~$ The neutrino Yukawa couplings (f $^{\sf{v}}\sim {\rm O}(1)$)
- We will see how this seesaw mechanism <mark>can</mark>
	- \bullet influence the *existing decay pattern* of $\rm A_1$
	- \bullet generates neutrino mass $\mathbf{m}_{\mathbf{v}} \sim \mathbf{eV}$

Superpotential :

 W = $W_{\text{NMSSM}} + W'$ W' = $f_{ij}^V H_u L_i N_j + (\lambda_N)_i SN_i X_i + \mu_{Xi} \hat{X}_i \hat{X}_i$

- \bullet N_i and X_i : Gauge singlets carrying the lepton numbers -1 and $+1$
- \bullet $(\lambda_{\rm N})_{\rm i}\,$ S $\rm N_{\rm i}$ $\rm X_{\rm i}$ $:$ Lepton number conserving term
- \bullet $\mu_{\chi}{}_{\dot{\imath}}\;$: Effective mass term provides lepton number violation
- Once the scalar component of S acquires a vev (ν_{S}) , we have • Lepton number conserving mass terms (i) $M_{\text{Ni}}\Psi_{\text{Ni}}\Psi_{\text{Xi}}$ with $M_{\text{Ni}}\equiv(\lambda_{\text{N}})_{\text{i}}\nu_{\text{S}}$ and (ii) $(m_D)_{ij}\Psi_{\nu i}\Psi_{Nj}$ with $(m_D)_{ij} = f_{ij}^{\nu} \nu_u$

Considering one generation, the (3×3) mass matrix in the $(\Psi_\mathrm{\nu},\Psi_\mathrm{N}\,,\Psi_\mathrm{X})$ basis \Rightarrow

$$
\mathcal{M} = \left(\begin{array}{ccc} 0 & m_D & 0 \\ m_D & 0 & M_N \\ 0 & M_N & \mu_X \end{array} \right)
$$

The mass eigenvalues ($m_1 << m_2$, m_3)

$$
m_1\,=\frac{m_D^2\,\mu_X}{m_D^2+M_N^2}\,,\quad m_{2,3}= \mp \sqrt{M_N^2+m_D^2}+\frac{M_N^2\,\mu_X}{2(m_D^2+M_N^2)}\,.
$$

- \bullet $\rm m_1$ is the lightest mass eigenvalue : Small values of $\rm \mu_X$ provides $\rm m_\nu \sim eV$ scale
- \bullet $\mu_X \sim$ O(eV) is natural as $\mu_X \rightarrow 0$ restores lepton number symmetry
- \bullet Thus $M_{\rm N}$ or $\rm m_D$ is unconstrained

 $M_N \sim O(10)$ GeV can influence substantially the decay pattern of A_1

Reanalyzing ^A¹ **decay modes**

- The lightest CP-odd scalar \mathcal{A}_1 has additional interactions with the <mark>sterile neutrinos</mark> \Rightarrow thus new decay final states
	- \bullet $\mathcal{A}_1 \to \Psi_\mathrm{v} \Psi_\mathrm{N}$: Depends on the $\cos\theta_\mathrm{A}$ component of \mathcal{A}_1
	- \bullet $\mathcal{A}_1 \rightarrow \Psi_\mathsf{N} \Psi_\mathsf{X}$: Depend on the $\mathsf{sin} \, \theta_\mathsf{A}$ component of \mathcal{A}_1

Consequently, the invisible BRs (normalized them with the visible modes)

$$
\frac{\text{Br}(A_1 \rightarrow \Psi_{\nu} \Psi_N)}{\text{Br}(A_1 \rightarrow f\overline{f}) + \text{Br}(A_1 \rightarrow c\overline{c})} \approx \frac{m_D^2}{m_f^2 \tan^4 \beta + m_c^2},
$$

$$
\frac{\text{Br}(A_1 \rightarrow \Psi_N \Psi_X)}{\text{Br}(A_1 \rightarrow f\overline{f}) + \text{Br}(A_1 \rightarrow c\overline{c})} \approx \tan^2 \theta_A \frac{M_N^2}{m_f^2 \tan^2 \beta + m_c^2 \cot^2 \beta} \frac{v^2}{v_S^2}
$$

(neglecting phase-space effects)

- Invisible decay prefers large $\tan^{2}\theta_{\mathrm{A}}$, thus large singlet component and moderate values for tan β
- The BR into $\mathcal{A}_1 \to \Psi_\text{N} \Psi_\text{X}$ dominates over the other modes
- For numerical illustration: we choosetan β = 3, 20, cos θ $_{A}$ = 0.1, M_{N} = 5, 30 GeV
	- \bullet $\rm m_{A_{-1}}>M_{N}$ to allow the two-body decays
	- \bullet We consider $\rm m_{A_{-1}} < 10$ GeV and $\rm m_{A_{-1}} < 40$ GeV
	- Our parameter choice reflects two regimes where
	- (i) Upsilon constraints and (ii) B-physics or constraints from LEP are strong

Results

With the above choices of $\cos\theta_\text{A}$ and $\tan\beta$, the resultant X_d is ruled out in general
NUCON L NMSSM for $\rm m_{A_{1}} < 10$ GeV

- \mathcal{A}_1 has significant BRs into the invisible modes thus \Rightarrow relaxing the constraints from its visible decays
- Phase space suppression : $\left(\left\{1-(\frac{2\mathfrak{m}_{f}}{\mathfrak{m}_{A_1}})^2\right\}\bigg/\left\{1-(\frac{2M_N}{\mathfrak{m}_{A_1}})^2\right\}\right)^{1/2}$ Our choice $\rm m_{A_{1}} >M_{N},\ m_{f}$ makes phase space contribution quite insignificant

Connection between light neutrino and light NMSSM**pseudoscalar : Summary**

light A_1 in NMSSM

 \Rightarrow attractive phenomenology related to Higgs hunting & DM annihilations

- Challenged by different experiments
	- \Rightarrow associated with the decays of a light $\mathcal{A}_1 \rightarrow \mathsf{f}\bar{\mathsf{f}}$
- We augment the NMSSM Superpotential with two singlet neutrinos N and X
 λ Minimal actor sing that serves twin purpose
	- $\Rightarrow \; \underline{\text{Minimal extension}}$ that serves twin purpose
	- \bullet generates $m_{\nu} \sim eV$
	- Significant BRs into $A_1 \rightarrow NX$
	- \Rightarrow BR($A_1 \rightarrow f\bar{f}$) is reduced

This naturally weakens the constraints on the $\frac{\mathcal{A}_1}{\mathcal{A}_1}$ mass and on its couplings χ_d

THANK YOU

$\bf{Constant\ on\ the\ Higgs\ masses: Light\ } A_1$

- Radiative Upsilon decays ($\Upsilon(ns)\equiv b\bar{b}$ vector like bound state with $\mathfrak{m}_{\Upsilon}\geq 9.46$ GeV) $\rightarrow\gamma+X$ searched in B-factories like BaBar, CLEO..
- $\Upsilon \equiv \gamma + A_1$ followed by $A_1 \to \tau^+ \tau^-$, $\mu^+ \mu^- \Rightarrow$ visible if A_1 is quite light $(\mathcal{A}_1 \leq 10)$ GeV \Rightarrow put bounds on $m_{\mathcal{A}_{-1}}$ and in particular on $\cos \theta_{\mathcal{A}}$
- In this regime h decay leads $h \to A_1A_1 \to 4\tau \Rightarrow$ constrained by the recent ALEPH recults (ctrlust and λ results ($e^+e^-\to Z+4\tau$)
- bottom-eta $\eta_{\rm b}$ meson \equiv CP-odd scalar ${\rm b\bar b}$ bound state with $\rm m_{\eta_{\rm b}}\sim$ 9.389 GeV has recently been discovered
- The mass difference $\text{Upsilon}(1S) \eta_{\text{b}}(1S) \Rightarrow \text{hyperfine splitting (E}_{\text{hfs}}^{\text{EXP}}(1S))$
- $\mathsf{E^{EXP}_{hfs}}(1S) \sim 70\mathsf{MeV} > \mathsf{E^{QCD}_{hfs}}(1S)(42\mathsf{MeV}) \Rightarrow$ could be explained by η_b-A_1 mixing (M.Drees and K.i.Hikasa: Phys.Rev.D 41, 1547 (1990); F.Domingo, U.Ellwanger and M.A.Sanchis-Lozano, Phys.Rev.Lett. 103, **111802 (2009))**
- $\rm{m_{A_{1}}}$ with mass very close to $\rm{m_{H_{B}}}$ should provide the correct mass \sim 9.389 GeV $_{\rm b}$ is constrained ⇒physical states after mixing

 $\mathsf{Br}(\mathsf{B}_{\mathsf{s}} \to \mu^+ \, \mu^-)$ and $\Delta \mathsf{M}_{\mathsf{s}, \, \mathsf{d}}$: Role of A_{1}

Small X_d : Constraints are much relaxed compared to the MSSM A boson

Light ^A¹ **: Constraints from collider ^physics**

ALEPH collaboration has reanalysed of LEP-2 data for $h\to A_1A_1\to 4\tau$ final states
(relevent for $m\leq 3m$) (relevant for $\rm m_{\AA_1} < 2 m_b$)

Consequently upper limits have been placed on :

 $\frac{\sigma(e^+e^-\to Z\hbar)}{\sigma_{\text{SM}}(e^+e^-\to Z\hbar)}\times\text{Br}(\hbar\to A_1A_1)\times\textbf{Br}(A_1\to\tau^+\tau^-)^2$

D0 collaboration (Fermilab Tevatron) has analyzed $h \to A_1A_1 \to 4\mu$ mode and
placed an unner bound an (relevent for $m \leq 3m$). placed an upper bound on (relevant for $\rm m_{A_{1}} < 2m_{\tau})$: $\sigma(p\bar{p} \to hX) \times Br(h \to A_1A_1) \times Br(A_1 \to \mu^+ \mu^-)^2$

Similarly, other searches in this direction are :

- \bullet $\text{h} \rightarrow \text{A}_1\text{A}_1 \rightarrow 4\text{b}$ for $\text{m}_\text{h} < 110$ GeV (LEP)
- \bullet h \to A₁ A₁ \to gg, cc, $\tau^+ \tau^-$ for m_h 45 86 GeV (OPAL)
- $h \to A_1 A_1 \to \mu^+ \mu^- \tau^+ \tau^-$ (D0)

All these observables constrain $\mathrm{Br}(\mathcal{A}_1\to \mathrm{f}\bar{\mathrm{f}})$ and X_{d}