A possible connection between neutrino mass generation and the lightness of a NMSSM pseudoscalar

Debottam Das

Laboratoire de Physique Theorique d'Orsay

Talk presented at : PLANCK 2011 (IST, LISBOA)

Ref: arXiv:1011.5037 (Physics Letters **B** 700 (2011) pp. 351-355)

(Asmaa Abada, Gautam Bhattacharyya, Cédric Weiland)

Motivation & Plan

- NMSSM can offer a very light pseudo-scalar Higgs boson A₁
 interesting phenomenology related to
 - Higgs physics
 - dark matter annihilations
- Strong constraints coming from Upsilon decays, B physics and accelerator bounds
- Proposing a definite model for neutrino mass generation in NMSSM, we reanalyze the status of all those experimental constraints

More specifically :

Can we evade the experimental constraints which are otherwise very stringent?

Superpotential:

 $W_{\text{MSSM}} = \overline{u} y_u Q H_u - \overline{d} y_d Q H_d - \overline{e} y_e L H_d + \mu H_u H_d$

 H_u , H_d , Q, L, \overline{u} , \overline{d} , $\overline{e} \Rightarrow$ chiral superfields

 \Rightarrow Provides all Yukawa interactions in SM

 \Rightarrow y_u, y_d, y_e are the dimensionless Yukawa couplings \Rightarrow 3 × 3 matrices in family space

Proper SUSY phenomenology requires

- $\mu \ll M_P$ (Plank scale), M_G (Gut scale)
- And, $\mu > 100 \text{ GeV}$ (From LEP limit on chargino mass)

 $\Rightarrow \mu \sim M_{SUSY} \sim TeV$ is required

The so-called μ problem in MSSM

NMSSM

An elegant way to solve this problem is by introducing an additional singlet superfield S with a coupling $\lambda SH_u H_d$ in the superpotential \Rightarrow

 $W_{NMSSM} = \lambda SH_u H_d + \frac{k}{3}S^3 + \dots (\mathcal{Z}_3 \text{ invariant superpotential})$

The VEV v_S of the real scalar component of <u>S</u> generates

 $\Rightarrow \mu_{eff} = \lambda \nu_S \Rightarrow \ \mu_{eff} \sim M_{SUSY}$

This is known as Next-to-Minimal Supersymmetric Standard Model (NMSSM)

Simplest SUSY standard model with M_{SUSY} as the only scale in the Lagrangian

The SM singlet scalar $S \Rightarrow can leave the footprints only in the neutral Higgs sector$ $and in the neutralino sector <math>\Rightarrow$

- Neutralinos χ_i^0 , $i = 1 \dots 5$,
 mixtures of the B̃, W̃, H̃_u, H̃_d and S̃
- 3 CP-even neutral Higgs bosons H_i (H₁, H₂, H₃)
 H₁ is the lightest CP-even Higgs boson
- 2 CP-odd neutral Higgs bosons A_1 and A_2 ($A_2 \simeq A_{MSSM}$)

 \Rightarrow The lightest pseudoscalar A_1 can be very light

Recent analysis shows that $m_{A_1} > 210 \text{ MeV}$

Ref: S. Andreas, O. Lebedev, S. Ramos-Sanchez and A. Ringwald, JHEP 1008 (2010) 003

Higgs Physics:

■ The interest of a light A_1 is that *it provides a new and dominant decay channel for the lightest Higgs boson* $h \Rightarrow$ **LEP search strategy does not work !**

 $h \rightarrow A_1 A_1 \rightarrow 4f$ final state ! where $A_1 \rightarrow 2\mu, 2\tau, 2b$

• Particular interest is in the zone when $m_{A_1} < 10 \text{ GeV}$ \Rightarrow Allows to accommodate *lightest CP-even Higgs mass* $m_h \sim 95 - 105 \text{ GeV}$

Blessings for light DM:

- Lightest neutralino ($\simeq \tilde{B}, \tilde{S}$) can be very light ($\simeq 5 10 \text{ GeV}$) ⇒ ideal candidate for DM

A₁ : What makes it so light

In general

$$A_1 = \cos \theta_A A_{MSSM} + \sin \theta_A S_I$$

- A_{MSSM} is the doublet like CP-odd scalar in the MSSM sector of the NMSSM
- S_{I} represents the pseudoscalar component of the singlet scalar in the NMSSM
- Phenomenology related to A_1 is principally governed by its couplings to the SM fermions \Rightarrow includes the doublet component (cos θ_A) only

$$\mathcal{L}_{Aff} \equiv C_{Aff} \frac{ig_2 m_f}{2m_W} \bar{f} \gamma_5 f A,$$

•
$$C_{A_1\mu^-\mu^+} = C_{A_1\tau^-\tau^+} = C_{A_1b\bar{b}} = X_d = \cos\theta_A \tan\beta$$
, $(\tan\beta = \nu_u/\nu_d)$

•
$$C_{A_1 t \bar{t}} = C_{A_1 c \bar{c}} = \cos \theta_A \cot \beta$$

However, light or ultra-light CP-odd scalars are highly constrained via Upsilon decays, B physics and collider searches

Most of these constraints *exploit* the $A_1 f\bar{f}$ coupling \Rightarrow thus couples via $\cos \theta_A$ only

Constraint on the A_1 **mass : Upsilon & B physics**

Domingo et.al. JHEP 0901:061,2009

• $\Upsilon(ns) \equiv b\bar{b} \ (m_{\Upsilon} \ge 9.46 \text{ GeV}) \Rightarrow \Upsilon \rightarrow \gamma + X \text{ searched in B-factories like BaBar, CLEO..}$

• $\Upsilon \rightarrow \gamma + A_1$ followed by $A_1 \rightarrow \tau^+ \tau^-$, $\mu^+ \mu^- \Rightarrow$ visible if A_1 is quite light ($A_1 \leq 10 \text{ GeV}$)

• B physics constraints :

$$\Rightarrow \Delta M_{s}, \Delta M_{d} \ (\equiv m_{\bar{B}_{s,d}} - m_{B_{s,d}}) \Rightarrow Br(B_{s} \rightarrow \mu^{+} \mu^{-})$$

STRINGENT bounds on m_{A_1} and in particular on X_d

Light A_1 : **Other constraints**

- ALEPH collaboration reanalysed of LEP-2 data for $<u>h \to A_1 A_1 \to 4\tau$ final states (relevant for m_{A1} < 2m_b)
 </u>
- D0 collaboration (Fermilab Tevatron) analyzed $\frac{h \rightarrow A_1 A_1 \rightarrow 4\mu}{\mu} \mod (\text{relevant for } m_{A_1} < 2m_{\tau}):$
- Similarly, other searches in this direction are :
 - $h \rightarrow A_1 A_1 \rightarrow 4b$, gg, $c\bar{c}$, $\tau^+ \tau^-$, $\mu^+ \mu^- \tau^+ \tau^-$
 - \Rightarrow Again constrain on the $Br(A_1 \rightarrow f\bar{f})$ and X_d

Constraints	$m_{A_1} < 2m_{\tau}$	$[2m_{ au}$,9 . 2 GeV]	$[9.2 \text{ GeV}, M \gamma (1S)]$	$[M_{\Upsilon(1S)}^{,2m_B}]$
$\Upsilon(\mathfrak{n}S) \to \gamma A_1 \to \gamma(\mu^+\mu^-)$	\checkmark	×	×	X
$\Upsilon(\mathfrak{n}\mathfrak{s})\to\gamma A_1\to\gamma\tau^+\tau^-$	×	\checkmark	×	×
$e^+e^- \rightarrow Z + 4\tau$	×	\checkmark	×	×
$A_1 - \eta_b$ mixing	×	×	\checkmark	\checkmark
$e^+e^- ightarrow b b \tau^+ \tau^-$	×	×	×	\checkmark

SUMMARY:

Light neutrino mass: Can it be a blessing for light A_1

- Neutrinos are massless in the NMSSM
- Previous studies :
 - RpV-NMSSM ⇒ not compatible with DM motivation
 - RpC-NMSSM \Rightarrow introducing \hat{N}_i to the NMSSM field content $\Rightarrow f^{\nu} \sim 10^{-6}$
- We propose an extension of the NMSSM with two additional gauge singlets carrying lepton numbers :
 - \Rightarrow The so called <u>'inverse seesaw'</u> mechanism

Features

- Singlet neutrinos can be very light (few GeV)
- The neutrino Yukawa couplings $(f^{v} \sim O(1))$
- We will see how this seesaw mechanism can
 - influence the existing decay pattern of A₁
 - generates neutrino mass $m_{\nu} \sim eV$

Superpotential :

$$\begin{split} W &= W_{\text{NMSSM}} + W' \\ W' &= f_{ij}^{\nu} H_u L_i N_j + (\lambda_N)_i S N_i X_i + \mu_{Xi} \hat{X}_i \hat{X}_i \end{split}$$

- N_i and X_i : Gauge singlets carrying the lepton numbers -1 and +1
- $(\lambda_N)_i SN_i X_i$: Lepton number conserving term
- μ_{Xi} : Effective mass term provides lepton number violation
- Once the scalar component of S acquires a vev (ν_S), we have
 Lepton number conserving mass terms

 (i) M_{Ni}Ψ_{Ni}Ψ_{Xi} with M_{Ni} ≡ (λ_N)_iν_S and
 (ii) (m_D)_{ij}Ψ_{vi}Ψ_{Nj} with (m_D)_{ij} = f^v_{ij}ν_u

Considering one generation, the (3×3) mass matrix in the $(\Psi_{\gamma}, \Psi_{N}, \Psi_{X})$ basis \Rightarrow

$$\mathcal{M} = \begin{pmatrix} 0 & m_D & 0 \\ m_D & 0 & M_N \\ 0 & M_N & \mu_X \end{pmatrix}$$

D The mass eigenvalues ($m_1 \ll m_2, m_3$)

$$m_1 = \frac{m_D^2 \,\mu_X}{m_D^2 + M_N^2} \,, \quad m_{2,3} = \mp \sqrt{M_N^2 + m_D^2} + \frac{M_N^2 \,\mu_X}{2(m_D^2 + M_N^2)} \,.$$

- m_1 is the lightest mass eigenvalue : Small values of μ_X provides $m_v \sim eV$ scale
- $\mu_X \sim O(eV)$ is natural as $\mu_X \rightarrow 0$ restores lepton number symmetry
- \bullet Thus M_N or m_D is unconstrained

 $M_N \sim O(10)$ GeV can influence substantially the decay pattern of A_1

Reanalyzing A_1 decay modes

- The lightest CP-odd scalar A_1 has additional interactions with the sterile neutrinos \Rightarrow thus new decay final states
 - \bullet $A_1 \rightarrow \Psi_{\nu} \Psi_N$: Depends on the $\cos \theta_A$ component of A_1
 - \bullet $A_1 \rightarrow \Psi_N \, \Psi_X$: Depend on the sin θ_A component of A_1

Consequently, the invisible BRs (normalized them with the visible modes)

$$\begin{split} & \frac{\text{Br}\left(A_1 \rightarrow \Psi_{\nu} \Psi_{N}\right)}{\text{Br}\left(A_1 \rightarrow f\bar{f}\right) + \text{Br}\left(A_1 \rightarrow c\bar{c}\right)} & \simeq \quad \frac{m_D^2}{m_f^2 \tan^4 \beta + m_c^2} \text{ ,} \\ & \frac{\text{Br}\left(A_1 \rightarrow \Psi_{N} \Psi_{X}\right)}{\text{Br}\left(A_1 \rightarrow f\bar{f}\right) + \text{Br}\left(A_1 \rightarrow c\bar{c}\right)} & \simeq \quad \tan^2 \theta_A \frac{M_N^2}{m_f^2 \tan^2 \beta + m_c^2 \cot^2 \beta} \frac{\nu^2}{\nu_S^2} \end{split}$$

(neglecting phase-space effects)

- Invisible decay prefers large $tan^2 \theta_A$, thus large singlet component and moderate values for tan β
- **D** The BR into $A_1 \rightarrow \Psi_N \Psi_X$ dominates over the other modes
- For numerical illustration: we choose tan $\beta = 3, 20, \cos \theta_A = 0.1, M_N = 5, 30$ GeV
 - $m_{A_1} > M_N$ to allow the two-body decays
 - \bullet We consider $m_{A_{11}} < 10 \, \text{GeV}$ and $m_{A_{11}} < 40 \, \text{GeV}$
 - Our parameter choice reflects two regimes where
 - (i) Upsilon constraints and (ii) B-physics or constraints from LEP are strong

Results

	tan $eta=20$, cos $ heta_A=0.1$		tan $\beta = 3$, cos $\theta_A = 0.1$	
\mathcal{M}_{N} (GeV)	5	30	5	30
$Br(A_1\to \Psi_\nu\Psi_N)$	7×10^{-5}	3×10^{-6}	4×10^{-3}	1×10^{-4}
$Br(A_1\to \Psi_N\Psi_X)$	0.7	0.9	~ 1	~ 1

- Solution With the above choices of $\cos \theta_A$ and $\tan \beta$, the resultant X_d is ruled out in general NMSSM for $m_{A_1} < 10 \text{ GeV}$
- A_1 has significant BRs into the invisible modes thus \Rightarrow relaxing the constraints from its visible decays
- $\label{eq:phase space suppression} \begin{tabular}{ll} \label{eq:phase space suppression} \end{tabular} & \mbox{Phase space suppression}: \left(\left\{ 1 (\frac{2 \, m_{\,f}}{m_{\,A_{\,1}}})^2 \right\} \, \middle/ \, \left\{ 1 (\frac{2 \, M_{\,N}}{m_{\,A_{\,1}}})^2 \right\} \right)^{1/2} \\ & \mbox{Our choice $m_{A_{\,1}} > M_N$, m_f makes phase space contribution quite insignificant} \end{tabular}$

Connection between light neutrino and light NMSSM pseudoscalar : Summary

Iight A_1 in NMSSM

 \Rightarrow attractive phenomenology related to Higgs hunting & DM annihilations

- Challenged by different experiments
 - $\Rightarrow\,$ associated with the decays of a light $A_1\,\rightarrow\,f\bar{f}$
- We augment the NMSSM Superpotential with two singlet neutrinos N and X
 - \Rightarrow <u>Minimal extension</u> that serves twin purpose
 - generates $m_{\nu} \sim eV$
 - Significant BRs into $A_1 \rightarrow NX$
 - $\Rightarrow \ BR(A_1 \to f\bar{f}) \text{ is reduced}$

 \checkmark This naturally weakens the constraints on the A₁ mass and on its couplings X_d

THANK YOU

Constraint on the Higgs masses : Light A₁

- Radiative Upsilon decays ($\Upsilon(ns) \equiv b\bar{b}$ vector like bound state with $m_{\Upsilon} \ge 9.46 \text{ GeV}) \rightarrow \gamma + X$ searched in B-factories like BaBar, CLEO..
- In this regime h decay leads $h \to A_1 A_1 \to 4\tau \Rightarrow$ constrained by the recent ALEPH results ($e^+ e^- \to Z + 4\tau$)
- **b** bottom-eta η_b meson \equiv CP-odd scalar $b\bar{b}$ bound state with $m_{\eta_b} \sim 9.389$ GeV has recently been discovered
- The mass difference Upsilon(1S) $\eta_b(1S) \Rightarrow$ hyperfine splitting (E^{EXP}_{hfs}(1S))
- - $m_{A_1} \text{ with mass very close to } m_{\eta_b} \text{ is constrained } \Rightarrow \text{physical states after mixing should provide the correct mass } \sim 9.389 \text{ GeV}$

 $Br(B_s \rightarrow \mu^+ \, \mu^- \,)$ and $\Delta M_{s\,,\,d}$: Role of A_1

Small X_d : Constraints are much relaxed compared to the MSSM A boson

Light A_1 : **Constraints from collider physics**

ALEPH collaboration has reanalysed of LEP-2 data for <u>h → A₁ A₁ → 4τ</u> final states (relevant for $m_{A_1} < 2m_b$)

Consequently upper limits have been placed on :

 $\frac{\sigma(e^+e^- \to Zh)}{\sigma_{\text{SM}}(e^+e^- \to Zh)} \times Br(h \to A_1A_1) \times Br(A_1 \to \tau^+ \tau^-)^2$

D0 collaboration (Fermilab Tevatron) has analyzed <u>h → A₁ A₁ → 4µ</u> mode and placed an upper bound on (relevant for m_{A₁} < 2m_τ): $\sigma(p\bar{p} \to hX) \times Br(h \to A_1 A_1) \times Br(A_1 \to \mu^+ \mu^-)^2$

Similarly, other searches in this direction are :

- \bullet $h \rightarrow A_1\,A_1 \rightarrow 4b$ for $m_h <$ 110 GeV (LEP)
- $h \rightarrow A_1 A_1 \rightarrow gg$, $c\bar{c}$, $\tau^+ \tau^-$ for $m_h 45 86 \text{ GeV}$ (OPAL)
- $\bullet~h \rightarrow A_1\,A_1 \rightarrow~\mu^+\,\mu^-\,\tau^+\,\tau^-$ (D0)

All these observables constrain $Br(A_1 \rightarrow f\bar{f})$ and X_d