New anomalies in the solar sector?

Antonio Palazzo

Excellence Cluster ‘Universe’
Two weak anomalies in the solar sector:
 I - The solar/KamLAND θ_{12} mismatch;
 II - The anomalous solar spectrum behavior.

Two possible (classes of) explanations:
A - Standard/non-standard kinematics (θ_{13}/θ_{14});
B - New dynamics (NSI).

Conclusions
Introduction
2011 status of the standard 3ν mass-mixing parameters
[update of Fogli et al., arXiv:0805:2517 (in preparation)]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$\delta m^2/10^{-5} \text{ eV}^2$</th>
<th>$\sin^2 \theta_{12}$</th>
<th>$\sin^2 \theta_{13}$</th>
<th>$\sin^2 \theta_{23}$</th>
<th>$\Delta m^2/10^{-3} \text{ eV}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best fit</td>
<td>7.54</td>
<td>0.307</td>
<td>0.014</td>
<td>0.42</td>
<td>2.36</td>
</tr>
<tr>
<td>1σ range</td>
<td>7.32–7.79</td>
<td>0.291–0.325</td>
<td>0.006–0.023</td>
<td>0.38–0.51</td>
<td>2.26–2.48</td>
</tr>
<tr>
<td>2σ range</td>
<td>7.14–7.99</td>
<td>0.275–0.342</td>
<td><0.033</td>
<td>0.36–0.59</td>
<td>2.17–2.57</td>
</tr>
<tr>
<td>3σ range</td>
<td>6.98–8.17</td>
<td>0.259–0.360</td>
<td><0.042</td>
<td>0.33–0.64</td>
<td>2.07–2.67</td>
</tr>
</tbody>
</table>
Two anomalies in the solar sector
I - Solar & KamLAND prefer different θ_{12} values
II - No MSW upturn in the $^8\text{B} \nu$ spectrum

BOREXINO

SNO LETA

SK-III
Standard and non-standard kinematical effects

$\theta_{13} \text{ vs } \theta_{14}$
Tension can be alleviated by non-zero θ_{13}

For $\theta_{13} = 0$
Solar and KamLAND prefer different values of θ_{12}

For $\theta_{13} > 0$
Solar data prefer higher θ_{12}
KamLAND prefers lower θ_{12}

But the same task can be accomplished by θ_{14}

\[
\begin{aligned}
CC & \sim \Phi_B P_{ee} \\
NC & \sim \Phi_B (1-P_{es}) \\
ES & \sim \Phi_B (P_{ee} + 0.15 P_{ea})
\end{aligned}
\]

Solar ν sensitive to P_{es}

CC/NC (SNO) & ES (SK)

Different correlations

Similar indication at 1.8σ

We expect a degeneracy among θ_{13} and θ_{14}

(PRD accepted)
Indistinguishability of θ_{13} from θ_{14}

Complete degeneracy

Solar sector essentially sensitive to $\sim U_{e3}^2 + U_{e4}^2$

Hint of ν_e mixing with states others than (ν_1, ν_2)

Different probes are necessary to determine if ν_e mixes with ν_3 or ν_4

(PrD accepted)
But kinematics cannot explain the second anomaly

Spectrum unaffected in both cases

\[\theta_{13} \neq 0 \quad \theta_{14} = 0 \quad (3\nu) \]

\[P_{ee} = c_{13}^4 P_{ee}^{2\nu} \begin{vmatrix} \rightarrow Vc_{13}^2 \\ V \end{vmatrix} + s_{13}^4 \]

\[P_{es} = 0 \]

\[\theta_{13} = 0 \quad \theta_{14} \neq 0 \quad (4\nu) \]

\[P_{ee} = c_{14}^4 P_{ee}^{2\nu} \begin{vmatrix} \rightarrow Vc_{14}^2 \\ V \end{vmatrix} + s_{14}^4 \]

\[P_{es} \approx s_{14}^2 P_{ee}^{2\nu} \begin{vmatrix} \rightarrow Vc_{14}^2 \\ V \end{vmatrix} + s_{14}^2 \]

Rescaling of \(V \) induces minor dynamical effects
Non-standard dynamics:

New flavor-changing interactions
The S-K tension from a different perspective

From this perspective, it is meaningful to hypothesize that the disagreement may result from some unaccounted effect intervening in the dynamics of solar ν transitions.

Non-standard interactions (NSI) offer one such possibility, as they can alter the coherent forward scattering of solar ν's on the constituents of the ordinary matter (Wolfestein 1978).
Coherent forward scattering with NSI

\[\nu_\alpha \rightarrow \nu_\alpha \quad \text{Z} \quad f \rightarrow f \]

\[\nu_e \rightarrow \nu_e \quad \text{W} \quad e^- \rightarrow e^- \]

\[\nu_\alpha \rightarrow \nu_\beta \quad ? \quad f \rightarrow f \]

Standard interaction terms

NSI term(s)

NSI described by an effective four-fermion operator

\[O^{\text{NSI}}_{\alpha\beta} \sim \bar{\nu}_\alpha \nu_\beta \bar{f} f \]

Subweak strength \(\mathcal{E} G_F \)

\[(\alpha, \beta) = e, \mu, \tau \]

\[f \equiv (e, u, d) \]
Explaining the first anomaly

How ε counterbalances θ_{12}

At high energies, effect of θ_{12} is balanced by NSI, ... with an interesting “side effect”: spectrum is flatter ...

* $\varepsilon = \varepsilon_{e\mu} c_{23} - \varepsilon_{e\tau} s_{23}$
How to quantify such spectral distortions

The response functions of SK, SNO, Borexino are centered around $E_0 = 10$ MeV, where they have maximal sensitivity.

Assuming a regular behavior for the survival probability we can parameterize its high energy behavior as a second order polynomial:

$$P_{ee} = c_0 + c_1 (E-E_0) + c_2 (E-E_0)^2$$

It is then possible to:

1) Extract the coefficients from the combination of all the experiments sensitive to the high-energy neutrinos.

2) Check where a given theor. model (standard MSW, +NSI, etc.) “lives” in the space of the coefficients c_i’s.
High-E polynomial expansion is accurate

\[\Delta m^2 = 7.67 \times 10^{-5} \text{ eV}^2 \]

\[
\begin{array}{ccc}
S_{12}^2 & \varepsilon & 2\nu \\
0.312 & 0 & 2\nu \\
0.327 & -0.16 & 2\nu + \text{NSI}
\end{array}
\]

\[P_{ee} \]

\[E \ (\text{MeV}) \]
NSI can explain also the second anomaly

NSI gains a $\Delta \chi^2 \sim -2.0$ from better description of the spectrum
NSI are favored at the $\sim 2\sigma$ level

New kinematics or new dynamics?

Spectral info tends to favor NSI over θ_{13} (or θ_{14})

Conclusions

- The solar sector presents two weak anomalies;

- Kinematical effects induced by θ_{13} (standard) or θ_{14} (non-standard) can alleviate (only) one of them;

- New dynamical effects (NSI) can explain both;

- New solar low-energy data and corroboration by the rest of ν phenomenology indispensable.
Back up
Solar hint of $\theta_{13} > 0$ depends on the reactor fluxes

KamLAND prefers larger values of θ_{13} with the new (higher) ν fluxes as a bigger rate suppression is needed in this case
The 3+1 Scheme

The 4th \(\nu \) state induces a small perturbation of the 3-flavor framework.

\[|U_{s4}| \sim 1 \]

\[\Delta m_{\text{sol}}^2 \]

\[\Delta m_{\text{atm}}^2 \]

\[\Delta m_{\text{new}}^2 > 1eV^2 \]

* Solar sector alone cannot distinguish the 3+1 scheme from a scheme where also \(U_{s3} \) is big (but this disfavored by the atmospheric sector).

* Hierarchy: reciprocal ordering of \((\nu_3, \nu_4) \) & respect to \((\nu_1, \nu_2) \) unknown.
The reactor anomaly and the Gallium calibration problem

In a 2ν framework:

\[P_{ee} \approx 1 - \sin^2 2\theta_{new} \sin^2 \frac{\Delta m_{new}^2 L}{4E} \]
\[\sin^2 2\theta_{new} \approx 0.17 \pm 0.1 \text{ (95\%)} \]

In a $3+1$ scheme:

\[P_{ee} = 1 - 4 \sum_{j>k} U_{ej}^2 U_{ek}^2 \sin^2 \frac{\Delta m_{jk}^2 L}{4E} \]
\[\Delta m_{sol}^2 \ll \Delta m_{atm}^2 \ll \Delta m_{new}^2 \]
\[\sin^2 \theta_{new} \approx U_{e4}^2 = \sin^2 \theta_{14} \]
KamLAND in a 3+1 scheme

\[P_{ee} = 1 - 4 \sum_{j>k} U_{ej}^2 U_{ek}^2 \sin^2 \frac{\Delta m_{jk}^2 L}{4E} \]

\[\Delta m_{sol}^2 \ll \Delta m_{atm}^2 \ll \Delta m_{new}^2 \]

\[\Delta m_{atm}^2 \text{-driven osc. averaged} \]

\[\Delta m_{new}^2 \]

\[P_{ee} = (1 - U_{e3}^2 - U_{e4}^2)^2 P_{ee}^{2\nu} + U_{e3}^4 + U_{e4}^4 \]

\[U_{e3}^2 = c_{14}s_{13}^2 \quad U_{e4}^2 = s_{14}^2 \]

Exact degeneracy between \(U_{e3} \) and \(U_{e4} \)
Solar ν conversion in a 3+1 scheme

\[i \frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} \]

\[H = U K U^T + V(x) \]

\[K = \frac{1}{2E} \text{diag}(k_1, k_2, k_3, k_4) \quad k_i = \frac{m_i^2}{2E} \]

Useful to write the mixing matrix as*:

\[U = R_{23} R_{24} R_{34} R_{14} R_{13} R_{12} \]

$\theta_{14}=\theta_{24}=\theta_{34}=0 \quad \rightarrow \quad 3$-flavor case

\[V = \text{diag}(V_{CC}, 0, 0, -V_{NC}) \]

\[V_{CC} = \sqrt{2} G_F N_e \quad V_{NC} = \frac{1}{2} \sqrt{2} G_F N_n \]

* We assume U real but in general it can be complex due to CP-odd phases
Change of basis:

\[\nu' = (R_{23} S R_{13})^T \nu = A^T \nu = R_{12} U^T \]

In the new basis:

\[H' = A^T H A = R_{12} K R_{12}^T + R_{13}^T S^T V S R_{13} \]

At zero\(^{th}\) order in:

\[\frac{V}{k_{atm}} \text{ and } \frac{V}{k_{new}} \]

\[H' \sim \begin{pmatrix} H_{2\nu}' & \vdots \\ \vdots & \ddots \end{pmatrix} \]

The 3\(^{rd}\) and 4\(^{th}\) state evolve independently from the 1\(^{st}\) and 2\(^{nd}\)

The dynamics reduces to that of a two neutrino system
Diagonalization of the Hamiltonian

The 2x2 Hamiltonian is diagonalized by a 1-2 rotation

\[\tilde{R}_{12}^T H'_{2
u} \tilde{R}_{12} = diag(\tilde{k}_1, \tilde{k}_2) \]

which defines the solar mixing angle in matter

\[\tilde{\theta}_{12}(x) \]

wavenumbers in matter

\[\tilde{k}_i \]

The starting Hamiltonian is then diagonalized by

\[\tilde{U} = A \tilde{R}_{12} \]

\[\tilde{U}^T H \tilde{U} = diag(\tilde{k}_1, \tilde{k}_2, k_3, k_4) \]

For \(\nu_3 \) and \(\nu_4 \) (averaged) vacuum-like propagation
The 2x2 Hamiltonian: \[H_{2\nu}^\prime = H_{2\nu}^{\prime \text{kin}} + H_{2\nu}^{\prime \text{dyn}} \]

\[
H_{2\nu}^{\prime \text{kin}} = \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \end{pmatrix} \begin{pmatrix} -k_{s\omega}/2 & 0 \\ 0 & k_{s\omega}/2 \end{pmatrix} \begin{pmatrix} c_{12} & -s_{12} \\ s_{12} & c_{12} \end{pmatrix}
\]

\[k_{s\omega} = \frac{m_2^2 - m_1^2}{2E} \]

\[
H_{2\nu}^{\prime \text{dyn}} = V_{CC}(x) \begin{pmatrix} \gamma^2 + r(x)\alpha^2 & r(x)\alpha\beta \\ r(x)\alpha\beta & r(x)\beta^2 \end{pmatrix}^* \]

\[r(x) = -\frac{V_{NC}}{V_{CC}} = \frac{1}{2} \frac{N_n(x)}{N_e(x)} > 0 \]

\[\begin{align*}
\alpha^2 + \beta^2 &= U_{s1}^2 + U_{s2}^2 \\
\gamma^2 &= 1 - (U_{e3}^2 + U_{e4}^2)
\end{align*} \]

\[\begin{align*}
\alpha &= c_{24}(s_{34}s_{13} - c_{34}s_{14}c_{13}) \\
\beta &= -s_{24} \\
\gamma &= c_{14}c_{13}
\end{align*} \]

All the dynamical effects induced by the 4th (and 3rd) state are 2nd order in the \(s_{ij} \): small deviations from the standard MSW.

But important new kinematical effects are present ...

For adiabatic propagation (valid for small deviations around the LMA)

\[
P_{ee} = \sum_{i=1}^{4} U_{ei}^2 \tilde{U}_{ei}^2 = U_{e1}^2 \tilde{U}_{e1}^2 + U_{e2}^2 \tilde{U}_{e2}^2 + U_{e3}^2 + U_{e4}^2
\]

\[
P_{es} = \sum_{i=1}^{4} U_{si}^2 \tilde{U}_{ei}^2 = U_{s1}^2 \tilde{U}_{e1}^2 + U_{s2}^2 \tilde{U}_{e2}^2 + U_{s3}^2 \tilde{U}_{e3}^2 + U_{s4}^2 \tilde{U}_{e4}^2
\]

Expressions for \(U_{ei}'s\)
(always valid)

\[
\begin{align*}
U_{e1}^2 &= c_{14}^2 c_{13}^2 c_{12}^2 \\
U_{e2}^2 &= c_{14}^2 c_{13}^2 s_{12}^2 \\
U_{e3}^2 &= c_{14}^2 s_{13}^2 \\
U_{e4}^2 &= s_{14}^2
\end{align*}
\]

\[
\begin{align*}
\sim 1 - s_{14}^2 - s_{13}^2
\end{align*}
\]

Expressions for \(U_{si}'s\)
(valid for \(\theta_{24} = \theta_{34} = 0\))

\[
\begin{align*}
U_{s1}^2 &= s_{14}^2 c_{13}^2 c_{12}^2 \\
U_{s2}^2 &= s_{14}^2 c_{13}^2 s_{12}^2 \\
U_{s3}^2 &= s_{14}^2 s_{13}^2 \\
U_{s4}^2 &= c_{14}^2 c_{13}^2 \\
\sim s_{14}^2 \\
\sim 0 \\
\sim 1 - s_{14}^2
\end{align*}
\]

The elements of \(\tilde{U}\) are obtained replacing \(\theta_{12}\) with \(\tilde{\theta}_{12}\)
calculated in the production point (near the sun center)
The SBL+Ga anomaly lifts the degeneracy in favor of θ_{14} at the "expense" of θ_{13}.

Global indication for $\theta_{14}>0$ at $\sim 3.4\sigma$
Assuming $\theta_{13}=0$
$\theta_{14}>0$ at almost 4σ
3-flavor evolution in the presence of NSI

Evolution in the flavor basis:
\[i \frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \]

H contains three terms:
\[H = H_{\text{kin}} + H_{\text{std}} + H_{\text{NSI}} \]

Kinematics
\[H_{\text{kin}} = U \begin{pmatrix} -\delta k/2 & 0 & 0 \\ 0 & +\delta k/2 & 0 \\ 0 & 0 & k/2 \end{pmatrix} U^\dagger \]
\[\delta k = \delta m^2/2E \]
\[k = m^2/2E \]

Standard MSW dynamics
\[H_{\text{std}}^{\text{dyn}} = \text{diag}(V, 0, 0) \]
\[V(x) = \sqrt{2} G_F N_e(x) \]

Non-standard dynamics
\[(H_{\text{dyn}}^{\text{NSI}})_{\alpha\beta} = \sqrt{2} G_F N_f(x) \epsilon_{\alpha\beta} \]
Reduction to an effective two flavor dynamics

One mass scale approximation:

\[P_{ee} = c_{13}^4 P_{ee}^{\text{eff}} + s_{13}^4 \]

\[i \frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_a \end{pmatrix} = H^{\text{eff}} \begin{pmatrix} \nu_e \\ \nu_a \end{pmatrix} \]

\[H^{\text{eff}} = V(x) \begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix} + \sqrt{2} G_f N_d(x) \begin{pmatrix} 0 & \varepsilon \\ \varepsilon' \end{pmatrix} \]

For \(\theta_{13} = 0 \):

\[\varepsilon = -\varepsilon_{e\mu} c_{23} - \varepsilon_{e\tau} s_{23} \]

\[\varepsilon' = -2\varepsilon_{\mu\tau} s_{23} c_{23} \]

Parameter space:

\[[\delta m^2, \theta_{12}, \varepsilon] \]
Before the new spectral info θ_{13} and NSI were degenerate