

History so far

- March 30th 2010 @ 12:58
- ... and less than 5 months later: > 30 results @ ICHEP10

2010-2011: LHC

Instantaneous Lumi from 10^{27} to $>2x10^{32}$ cm⁻²s⁻¹ (x2 the target)

More than 40/pb collected and usable for analysis
Up to 368 bunches colliding
150 ns minimum bunch spaces

All results presented here are using this data

Instantaneous lumi broke the record of 1.27×10^{33} last week

Up to 1404 (now 1092) bunches with 50 ns bunch spacing (which means LHC is full!)

Expected an integrated lumi somewhere in the 1-3/fb

In these days we collect around 2010 equivalent lumi in one (good) day

CMS detector

- All silicon tracker design (pixel + strip)
- High resolution electromagnetic calorimeter with 0.5% resolution @ Et=50 GeV
- Hadronic calorimeter for jets and hadrons
- Muon system with gaseous detectors to efficiently trigger and reconstruct muons

CMS - operations

- CMS has overall ~ 100 M electronic channels
- While CMS design is redundant and would allow for high quality physics even with problematic subdetectors

- ... the status of CMS, also after ~ 1 year of operations, is really good
- Current data could be compared with IDFAL detector simulations without issues
 - ...but of course, we are also simulating the percent level issues

Detector understanding

- The understanding of the physics objects has been spectacular practically since the beginning
 - Data driven estimates on efficiencies, resolutions and performance have shown from the start very similar to our simulated startup scenarios
 - Calibration with data has already reached design precision for most of the objects
 - Just an example: out-of-the-boxbtagging using out of the box tracking, vertexing, jet reconstruction

Uncalibrated btagging at startup Comparable with simulations spanning 6 orders of magnitude (Y) and 30 sigmas (X)
TCHP ~ IP/o(IP)

The 'M' in CMS

The 'E' is missing in the name, but ...

Results (as of some weeks ago)

In total: 99 physics analyses approved so far
48 papers completed (published, accepted, or submitted)
19 papers close to submission
32 analyses with a Public Analysis Summary

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

(and expect many more for Summer Conferences, on 2011 data)

What can I show here?

- Some selected results on:
 - Standard model rediscovery
 - Electroweak, QCD, B physics...
 - Top physics
 - From signal to background...
 - Higgs searches
 - Results + prospects on 2011 data ...
 - New physics searches
 - Current SUSY + some Exotica limits ...
 - No time for HI, sorry
 - *but* please note these would be worth a talk on their own!

QCD and Jets

- Will show just
 - Dijet mass
- Full list of public results:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsQCD
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsJME

Dijet mass

- Dijet mass in doubly differential form (Pt and eta)
 - Ranging from 200 GeV to 3.5 TeV
 - Both a QCD check and an unbiased look for dijet resonances
- Important measurement which can be done, for the low mass range, just in the first LHC phase when jet triggers are (were) low
- Overall excellent understanding of jet production

Minimum jet p _T (GeV)	30	50	70	100	140
$\mathcal{L}_{ ext{eff}}(ext{pb}^{-1})$	0.32	3.2	8.6	19	36

Physics Letters B
Volume 700, Issues 3-4,
13 June 2011, Pages 187-206

B physics

b/B differential cross sections

- Full list of results:
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsBPH

B quark/meson cross sections

inclusive b jets (with btag)

Results generally between Pythia and MC@NLO

 $B^+ \to J/\Psi K^+$ Phys. Rev. Lett. 106, 112001 (2011)

ElectroWeak Physics

- Just showing:
 - W and Z production
 - W/Z plus jets
 - WW cross section
 - Full list of results
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsEWK

W and Z production

- Z: peak from dileptons
- W: due to the presence of a neutrino, fit MET
 - QCD fully modeled from data
- Good agreement with NNLO+PDF theory predictions
 - Already constraining theory given the 1% experimental precision

CMS preliminary number of events 36 pb⁻¹ at $\sqrt{s} = 7 \text{ TeV}$ $E_T^{jet} > 30 \text{ GeV}$ data W → μν (MadGraph) other backgrounds 10³ 10² 10 data/MC exclusive jet multiplicity number of events 36 pb⁻¹ at $\sqrt{s} = 7 \text{ TeV}$ 10⁵ $E_T^{jet} > 30 \text{ GeV}$ $Z \rightarrow \mu\mu$ (MadGraph) all backgrounds 10^{2} 10 10⁻¹ data/MC 1.5 0.5 exclusive jet multiplicity

- Important as preparatory work for top analyses, and test of perturbative QCD V+n jets
 - Predictions are for n up to 4 for W, up to 3 for Z
- Search for leptonic decays of W and Z; use btagging to disentangle ttbar component in W sample
 - 2D fit to M_T^W vs N_{b-jet} distributions
- VB production in excellent agreement with ME + PS matched Monte Carlo model; also first test of Berends-Giele scaling

WW, Wy, Zy

- WW: important background to H to WW
- Select different sign ee, mumu, mue samples
- Use MET to kill DY background, and a Z veto

ttbar bkg has higher jet

multiplicity

Physics Letters B 699 (2011) 25–47

 $\sigma_{W^+W^-} = 41.1 \pm 15.3 \text{ (stat)} \pm 5.8 \text{ (syst)} \pm 4.5 \text{ (lumi) pb.}$

- W_γ, Z_γ, with W and Z in I_ν and II, with gamma's Et>
 10 GeV and lepton/gamma separation> 0.7 in (eta,phi)
- Agreement with SM found, and first lomit on WW γ , ZZ γ and Z $\gamma\gamma$ aTCG @ 7 TeV

The standard model @ CMS (2010 data)

Top

- Why is it interesting?
 - Heaviest particle known up to date
 - Only quark which decays before hadronizing
 - Its mass is one of the parameters which constrain more the EW fit
- Two highlights here
 - Top rediscovery (with mass/xsec measurements)
 - Single top

https://twiki.cern.ch/twiki/bin/ view/CMSPublic/PhysicsResultsTOP

The top mass and xsection

- Mass: Search for di-leptonic ttbar decays
- Xsection low, but less background; mostly from lepton misidentification
 - Events with 2 isolated leptons, not compatible with a Z decay; with two or more jets pt>30

- Xsection:
 - With dileptons

tt signal

 $Z/\gamma^* \rightarrow |\uparrow| (l=e,\mu)$

 With I+jets with and without btagging

CMS Preliminary

35.9 pb⁻¹ at \s= 7 TeV

Events with ee/uu/eu

Top xsection

Single Top cross section

- Two different analysis using leptonic W decays
 - Cut based, using angular info + 1 btagged jet
 - BDT, based on kinematic observables

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{lj}^*} = \frac{1}{2} (1 + A\cos\theta_{lj}^*)$$

Single top at 3 sigma level in both analyses

CMS PAS TOP-10-008

Higgs

- Some published results:
 - H to WW
 - H(mssm) to tau tau
- Some prospects for LHC/TeVatron

- Full list of results
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsHIG

$H\rightarrow WW\rightarrow 212v$ @ CMS

Direct WW production is irreducible background
Main handle is Helicity conservation:
spin 1 (Z*→WW) vs. spin 0 (H→WW)
For H, charged leptons tend to go in the same direction

Same pre-selection as WW analysis S/B poor: rely on MVA techniques (BDT)

95 % CL Limit for M _H = 160 GeV	CMS (Bayesian)
Expected	3.0 x SM
Observed	2.1 x SM

Physics Letters B 699 (2011) 25–47

(mssm) H to tautau

- Channels used: e-mu, e-had, mu-had
- improved mass reconstruction (better resolution) using likelihood, based on tau decay kinematics of visible decay products and Et(miss)

Limits on MSSM Higgs production, already improving on the Tevatron

Constrains on Higgs Mass

- M_H free parameter in SM
 - Indirect measurements:
 - From EWK precision data through radiative corrections

 $M_H = 89.0^{+35}_{.26} \text{ GeV}$ Excluded $M_H > 158 \text{ GeV}$ (@95%)

- From direct searches at LEP
 - M_H>114.4 GeV/c² @ 95% C.L.
- From direct searches at Tevatron
- Now: from direct searches at LHC

Tevatron Run II Preliminary, L ≤ 6.7 fb⁻¹

When we add TeVatron we can also exclude (85% CL) $158 < M_H < 175$

Tevatron discovery projections

- up to 10/fb/experiment
- •~3 σ exclusion from 100 115 GeV/c² and 150 180GeV/c²
- 5 "discovery" σ hard to reach anywhere
- (considering SM σ)

CMS Sensitivity Projections @ 5 fb⁻¹

CMS Significance of Obs. @ 5 fb⁻¹

ATLAS + CMS ≈ 2 x CMS	95% CL exclusion	3σ sensitivity	5 σ sensitivity
1 fb ⁻¹	120 - 530	135 - 475	152 - 175
2 fb ⁻¹	114 - 585	120 - 545	140 - 200
5 fb ⁻¹	114 - 600	114 - 600	128 - 482
10 fb ⁻¹	114 - 600	114 - 600	117 - 535

SUSY Search Strategy

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

Large SM backgrounds Low

sensitivity to strongly produced SUSY

sensitivity to gauge-mediated SUSY

- Basic analysis strategy:
- > Focus on topology using different kinematic observables
 - ➤So that types of SM bkgs and detector strong assets drive the searches
- use well understood CMS 'objects'
 - Leptons, photons, jets, MET; Particle Flow to increase sensitivity everywhere
- ➤ Use data driven background whenever possible
- ➤ 2011: setting the best limits is important, but we should also be prepared for discovery scenarios
- ➤ Some examples follow... Full results at

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Analysis	Approved Plots	CDS Entry	Luminosity	Comment
Search for Physics Beyond the Standard Model in Z + MET + Jets events at the LHC	SUS10010	PAS-SUS-10-010	34/pb	
Inclusive search for new physics at CMS with the jets and missing momentum signature	SUS10005	PAS-SUS-10-005	36/pb	
Further interpretation of the search for SUSY based on αT	SUS11001	PAS-SUS-11-001	35/pb	
Inclusive search for squarks and gluinos at $\sqrt{s} = 7 \text{ TeV}$	SUS10009	PAS-SUS-10-009	35/pb	
Search for New Physics in pp Collisions at \sqrt{s} = 7 TeV in Events with a Single Lepton, Jets, and Missing Transverse Momentum	SUS10006		36/pb	
Search for Supersymmetry in pp Collisions at \sqrt{s} = 7 TeV in Events with A Lepton, Photon, and Missing Transverse Energy	SUS11002	CERN-PH- EP-2011-058	35/pb	arxiv:1105.3152
Search for Physics Beyond the Standard Model Using Multilepton Signatures in \sqrt{s} = 7 TeV pp Collisions with the CMS Detector at the LHC	SUS10008		35/pb	
Search for new physics with same-sign isolated di-lepton events with jets and missing transverse energy at the LHC	SUS10004	CERN-PH- EP-2011-033	35/pb	arxiv:1104.3168
A Search for New Physics in b-tagged dijet and multi-jet events with Missing Energy in pp collisions at √s=7 TeV	SUS10011	PAS-SUS-10-011	35/pb	
Search for Physics Beyond the Standard Model in Opposite-Sign Dilepton Events in pp Collisions at \sqrt{s} = 7 TeV	SUS10007	CERN-PH- EP-2011-016	34/pb	arxiv:1103.1348
A Search for Supersymmetry in pp Collisions at 7 TeV Using Events with Two Photons and Large Missing Transverse Energy	SUS10002	CERN-PH- EP-2011-007	36/pb	arxiv:1103.0953
Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy	SUS10003	CERN-PH- EP-2010-084	35/pb	arXiv:1101.1628
Performance of Methods for Data-Driven Background Estimation in SUSY Searches	SUS10001	PAS SUS-10-001	11-76/nb	

A clear channel: same sign dileptons

searches

Easy selection

Start from a lepton or HT trigger ^q

Ask for 2 same sign leptons (e,mu) with sizeable Pt

- Ask for at least 2 jets
- Ask for a sizeable MET
- Bkg mostly from fake leptons and leptons from ttbar (but overall < 1 event expected)

"N" leptons mSUGRA exclusions with $\tan \beta = 3$, $\mu > 0$ and A0 = 0

More difficult: Missing Momentum signatures

- You really need to understand your detector in details
 - Particle flow essential here
- Ask for
 - HT triggers
 - At least 3 jets
 - Sizeable HT and Missing momentum
- All bkgs are estimated with data driven techniques

CMS-PAS-SUS-10-005

(CMS	LM	1:
		~	0

- mSUGRA
- M0=60 GeV
- M(1/2)=250 GeV
- A0=0
- $tan(\beta)=10$
- µ>0

Method	Baseline		High- <i>H</i> _T		High-H _T	
	selection		selection		selection	
$Z \rightarrow \nu \bar{\nu}$ from γ +jets	26.3	± 4.8	7.1	±2.2	8.4	±2.3
$t\bar{t}/W \rightarrow e, \mu + X$ lost-lepton method	33.0	± 8.1	4.8	± 1.9	10.9	± 3.4
$t\bar{t}/W \rightarrow \tau_{hadr} + X \text{ method}$	22.3	± 4.6	6.7	± 2.1	8.5	± 2.5
QCD Rebalance+Smear method	29.7	± 15.2	0.16	± 0.10	16.0	± 7.9
QCD factorization method	25.2	± 13.4	0.4	± 0.3	17.3	± 9.4
Total data-driven background	111.3	± 18.5	18.8	± 3.5	43.8	±9.2
Observed in 36 pb ⁻¹ of data	111		15		40	

CMS Combined Exclusion Plot

Limits extend well beyond Tevatron reach

Exotica

- "generic" Z', W'
 - Can be extra gauge bosons, KK graviton excitations in RS, etc
- Extra dimensions
- Black Holes

- Full list of results:
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsEXO

Analysis	ArXiv Entry	Luminosity	Publication Status	Approved Plots
Search for First Generation Scalar Leptoquarks in the evjj channel in pp collisions at $\sqrt{s} = 7$ TeV NEW	1105.5237 (hep-ex)	36/pb	Submitted to PLB	EXO10006
Search for Large Extra Dimensions in the Diphoton Final State at the Large Hadron Collider	1103.4279 (hep-ex)	36/pb	Accepted by JHEP	EXO10026
Search for Resonances in the Dilepton Mass Distribution in pp collisions at √s = 7 TeV	1103.0981 (hep-ex)	40/pb	Accepted by JHEP	EXO10013
Search for a W' boson decaying to a muon and a neutrino in pp collisions at √s = 7 TeV	1103.0030 (hep-ex)	36/pb	Submitted to PLB	EXO10015
Search for a Heavy Bottom-like Quark in pp Collisions at √s = 7 TeV	1102.4746 (hep-ex)	34/pb	Accepted by PLB	EXO10018
Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at $\sqrt{s} = 7 \text{ TeV}$	1102.2020 (hep-ex)	36/pb	10.1103/PhysRevLett.106.201804	EXO10009
Search for Heavy Stable Charged Particles in pp collisions at √s = 7 TeV	1101.1645 (hep-ex)	3.1/pb	10.1007/JHEP03(2011)024	EXO10011
Search for for a heavy gauge boson W' in the final state with an electron and large missing transverse energy in pp collisions at $\sqrt{s} = 7$ TeV	1012.4945 (hep-ex)	36/pb	10.1016/j.PhysLetB.2011.02.048	EXO10014
Search for Pair Production of First-Generation Scalar Leptoquarks in pp Collisions at $vs = 7$ TeV	1012.4031 (hep-ex)	33/pb	10.1103/PhysRevLett.106.201802	EXO10005
Search for Pair Production of Second-Generation Scalar Leptoquarks in pp Collisions at \sqrt{s} = 7 TeV	1012.4033 (hep-ex)	34/pb	10.1103/PhysRevLett.106.201803	EXO10007
Search for Microscopic Black Hole Signatures at the Large Hadron Collider	1012.3375 (hep-ex)	35/pb	10.1016/j.PhysLetB.2011.02.032	EXO10017
Search for Stopped Gluinos in pp Collisions at √s = 7 TeV	1011.5861 (hep-ex)	10/pb	10.1103/PhysRevLett.106.011801	EXO10003
Search for Quark Compositeness with the Dijet Centrality Ratio in pp Collisions at √s = 7 TeV	1010.4439 (hep-ex)	2.9/pb	10.1103/PhysRevLett.105.262001	
Search for Dijet Resonances in 7 TeV pp Collisions at CMS	1010.0203 (hep-ex)	2.9/pb	10.1103/PhysRevLett.105.211801	

W', Z' to leptons

 Z': search for a clear peak mass under DY continuum

• W': search for peaks in the M_T (I,v) spectrum

Channel	μμ	ee	Combined
Z _{SSM}	1027 GeV	958 GeV	1140 GeV
Z_{ψ}	792 GeV	731 GeV	887 GeV
G_{KK} , $k/M_{Pl} = 0.05$	778 GeV	729 GeV	855 GeV
G_{KK} , $k/M_{Pl} = 0.10$	987 GeV	931 GeV	1079 GeV

arXiv:1103.0981

Z': exclusion depends on the model, limits are in the TeV region

W' to μν, eν

$$M_{\mathrm{T}} = \sqrt{2 \cdot p_{\mathrm{T}} \cdot E_{\mathrm{T}}^{\mathrm{miss}} \cdot (1 - \cos \Delta \phi_{\mu,\nu})}$$

CMS limits (36 pb⁻¹)

eν	1.36 TeV		
μν	1.4 TeV		
εν+μν	1.58 TeV		

ev arXiv:1012.5945, Accepted by PLB μν arXiv:1103.0030, Submitted to PLB

Extra dimensions in yy

- Require two high energy isolated photons, with diphoton mass in excess of 60 GeV
- Use barrel photons only, since they have highest purity
- Divide the spectrum in control, intermediate and signal region, and use control to assess the backgrounds

Process	$60 < M_{\gamma\gamma} < 200 \text{ GeV}$	$200 < M_{\gamma\gamma} < 500 \text{ GeV}$	$500 \text{ GeV} < M_{\gamma\gamma}$
Dijets	70 ± 28	0.5 ± 0.2	0.0009 ± 0.0004
γ + Jets	145 ± 7	2.3 ± 0.3	0.016 ± 0.003
Diphotons	150 ± 35	6.2 ± 1.4	0.29 ± 0.07
Total Backgrounds	365 ± 49	9.0 ± 1.5	0.30 ± 0.07
Observed	428	12	0

Upper limit on σ x BR < 0.11 pb for M $\gamma\gamma$ > 500 GeV Lower limits on Effective Planck scale in the range 1.6-2.3 TeV (depending on the # of ED)

Microscopic black holes

- What a signature! BH decays via Hawking radiation "democratically" to SM particles
 - Events with large number of energetic final state particles (quarks and gluons but also leptons, photons...)
- Use HT trigger since lots of hadronic activity expected
- Look for excess in S_T distributions in bins of particle multiplicity N, with S_T defined as the scalar sum of all sizeable (E>50 GeV) 'objects' (jets, leptons, photons, MET)
- Bkg: mostly multijet QCD; from data S_T<1100 GeV

Limits on the black hole mass are set in the range 3.5 – 4.5 TeV (model dependent)

What CMS is doing already with 2010 data...

Mass limits on MSSM/Exo in most cases set world records

Conclusions

- The startup of LHC, after the 2008 facts, has been exceeding all expectations (even if at lower energy, unfortunately)
 - and 2011-2012 run is exceeding initial estimates
- CMS has shown that the years spent on simulation and cosmic data taking were worth the effort
 - Data usable for physics from day 1
 - Detector understanding already matching asymptotic performance
 - Data Analysis environment has proven "analysis friendly", and this has helped fast turnaround of results
- Expect a full list of updated + new results for Summer Conferences, using 20x-XXx more data!

Susy reach 100/pb vs 1/fb (one example)

