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THE GRAND UNIFICATION PROGRAM

• Matter instability 
• GUT Monopoles

• Handle on flavor and neutrino masses
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Intrinsic predictivity of new phenomena

• Charge quantization
• Rationale for the SM quantum numbers



THE GRAND UNIFICATION PROGRAM

• Matter instability 
• GUT Monopoles

• In many extensions of the SM, gauge couplings seem to unify in a narrow window 
still allowed by proton decay limits and a perturbative QFT description 

• Handle on flavor and neutrino masses

Potential understanding of our low-energy world

Intrinsic predictivity of new phenomena

• Charge quantization
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THE GRAND UNIFICATION PROGRAM

• In many extensions of the SM, gauge couplings seem to unify in a narrow window 
still allowed by proton decay limits and a perturbative QFT description 

Main hint:

2

I. INTRODUCTION

∆αi(MZ) = O(10%) =⇒ ∆MG = O(100%) (1)
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• We have recently shown that the minimal potentially realistic Higgs sector that can be responsible for the
GUT→SM symmetry breaking in SO(10) GUTs corresponds in the non-supersymmetric case to 16⊕ 45.

• Issues with neutrino mass in the 16 ⊕ 45 model — most likely the 10 ⊕ 126 ⊕ 45 viable for fermionic mass
spectrum (quote future work? Tough challenge)

• In SUSY possibility to have a consistent neutrino spectrum just with 16 Higgs fields and non-renormalizable
Planck induced operators (which provide the needed B-L hyerarchy, missing in the susy one-step unification.
On the other hand the gauge symmetry beaking with adjoint and smaller Higgs representations is not allowed in
the most minimal settings. Goal of the paper is to investigate the minimal HIggs sector required for consistent
gauge breaking in SUSY SO(10) and E6 GUT models with a renormalizable superpotential. Only neutrinos
are sensitive to Planck physics, while the gauge beaking is truly one step and does not involve potentially large
threshold effects due to non-renormalizable operators (little hyerarchy issues at the unification scale).

• With SUSY, which among other things requires at least an extra 16 to maintain the D-flattness, there are
further constraints imposed on the vacuum manifold from the F -terms. A simple argument reveals that in
the SUSY setting, such a Higgs sector is inconceivable for its incapability of providing a full GUT symmetry
breaking down to the SM because an SU(5) subgroup remains intact. The reason is that there is only a single
SU(5)-preserving SM-singlet direction in the 16 of SO(10). This argument can be easily generalized to all
settings with any number of 16⊕ 16 in the Higgs sector.
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STILL LOOKING FOR “THE“ THEORY

After 37 years from Georgi and Glashow there is still no consensus on which is the 
the minimal theory 
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• GG SU(5): fails on the unification side and for neutrino masses

- Minimal extensions: add a 15H or a 24F [Dorsner, Fileviez Perez (2005), 
Bajc, Nemevsek, Senjanovic (2007)]

• Minimal SUSY SU(5): proton decay close to the experimental bound 

- But not ruled out [Bajc, Fileviez Perez, Senjanovic (2002), Emmanuel-Costa, Wiesenfeldt (2003), 
Martens, Mihaila, Salomon, Steinhauser (2010)]

After 37 years from Georgi and Glashow there is still no consensus on which is the 
the minimal theory 
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• GG SU(5): fails on the unification side and for neutrino masses

- More predictive in the Yukawa sector (SM matter + RH neutinos into 3 16F ’s)

- Natural relief from the tensions with the simplest SU(5) models

• SO(10) GUTs usually score better than SU(5) models 

- Minimal extensions: add a 15H or a 24F [Dorsner, Fileviez Perez (2005), 
Bajc, Nemevsek, Senjanovic (2007)]

• Minimal SUSY SU(5): proton decay close to the experimental bound 

- But not ruled out [Bajc, Fileviez Perez, Senjanovic (2002), Emmanuel-Costa, Wiesenfeldt (2003), 
Martens, Mihaila, Salomon, Steinhauser (2010)]

After 37 years from Georgi and Glashow there is still no consensus on which is the 
the minimal theory 
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Chain G2 G1

I: −→
210

{2L2R4C} −→
Λ45

{2L2R1X3c}

II: −→
54

{2L2R4CP} −→
Λ210

{2L2R1X3cP}

III: −→
54

{2L2R4CP} −→
Λ45

{2L2R1X3c}

IV: −→
210

{2L2R1X3cP} −→
Λ45

{2L2R1X3c}

V: −→
210

{2L2R4C} −→
Σ45

R

{2L1R4C}

VI: −→
54

{2L2R4CP} −→
Σ45

R

{2L1R4C}

VII: −→
54

{2L2R4CP} −→
λ210

{2L2R4C}

VIII: −→
45

{2L2R1X3c} −→
Σ45

R

{2L1R1X3c}

IX: −→
210

{2L2R1X3cP} −→
Σ45

R

{2L1R1X3c}

X: −→
210

{2L2R4C} −→
σ210

R

{2L1R1X3c}

XI: −→
54

{2L2R4CP} −→
σ210

R

{2L1R1X3c}

XII: −→
45

{2L1R4C} −→
Λ45

{2L1R1X3c}

TABLE I: Relevant SO(10) symmetry breaking chains via two intermediate gauge groups G1 and G2. For each step the
representation of the Higgs multiplet (in SO(10) notation) responsible for the breaking is given. The breaking to the SM group
1Y 2L3c is obtained via a 16 or 126 Higgs representation. The naming and ordering of the gauge groups follows the notation of
ref. [9].

SO(10)
nU∼n2−−−−−−→

〈Φ2〉 ,〈Φ1〉
G1

n1−−−−−−−−→
〈∆126

R 〉, 〈δ16
R 〉

3c2L1Y (6)

SO(10)
MU−−→
ωY

2L2R1X3c
M2−−→
ωR

2L1R1X3c
M1−−→
χR

3c2L1Y (7)

SO(10)
MU−−→
ωR

2L1R4C
M2−−→
ωY

2L1R1X3c
M1−−→
χR

3c2L1Y (8)

v2/Mseesaw ∼
√

∆m2
atm ⇒ Mseesaw ∼ 6 × 1014 GeV (9)

(100 GeV)2/Mseesaw !
√

∆m2
atm ⇒ Mseesaw " 1014 GeV (10)

The Higgs transforming as 10 under SO(10) may carry in general extra quantum numbers of a complex
representation of some additional symmetry (a discussion on the implementation of a Peccei-Quinn U(1)PQ

symmetry in this scenario is given in Ref. [5]). In this case it is sufficient to consider only two complex
symmetric matrices Y10 and Y126 at the renormalizable SO(10) level, namely

16F (Y1010H + Y120120H + Y126126H)16F , (11)

16F 16H16H/Λ16F , (12)

16H16H

Λ
(13)

INTERMEDIATE SCALES IN THE NON-SUSY SO(10)
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The unification ansatz predicts the existence of intermediate scales in the range 
1010÷14 GeV 
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The unification ansatz predicts the existence of intermediate scales in the range 
1010÷14 GeV 
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• We have recently shown that the minimal potentially realistic Higgs sector that can be responsible for the
GUT→SM symmetry breaking in SO(10) GUTs corresponds in the non-supersymmetric case to 16⊕ 45.

• Issues with neutrino mass in the 16 ⊕ 45 model — most likely the 10 ⊕ 126 ⊕ 45 viable for fermionic mass
spectrum (quote future work? Tough challenge)

• In SUSY possibility to have a consistent neutrino spectrum just with 16 Higgs fields and non-renormalizable
Planck induced operators (which provide the needed B-L hyerarchy, missing in the susy one-step unification.
On the other hand the gauge symmetry beaking with adjoint and smaller Higgs representations is not allowed in
the most minimal settings. Goal of the paper is to investigate the minimal HIggs sector required for consistent
gauge breaking in SUSY SO(10) and E6 GUT models with a renormalizable superpotential. Only neutrinos
are sensitive to Planck physics, while the gauge beaking is truly one step and does not involve potentially large
threshold effects due to non-renormalizable operators (little hyerarchy issues at the unification scale).

• With SUSY, which among other things requires at least an extra 16 to maintain the D-flattness, there are
further constraints imposed on the vacuum manifold from the F -terms. A simple argument reveals that in
the SUSY setting, such a Higgs sector is inconceivable for its incapability of providing a full GUT symmetry
breaking down to the SM because an SU(5) subgroup remains intact. The reason is that there is only a single
SU(5)-preserving SM-singlet direction in the 16 of SO(10). This argument can be easily generalized to all
settings with any number of 16⊕ 16 in the Higgs sector.

• By the way, how is it in the setting with multiple adjoints instead, i.e. with a Higgs sector like 16⊕ 16⊕ 451 ⊕
. . .⊕ 45n? It seems that this makes no difference for n = 2 because then the F -terms with respect to both 45’s
fix each 45 to align with the SU(5) direction of 16⊕ 16 because there is no mixing among them apart from the
mass term. However, for n ≥ 3 a new term of the form 451452453 is allowed and the game does not need to be
the same anymore, at least naively. On the other hand string induced models allow for at most two Higgs
adjoint reprs.

• In any case, we argue that in this respect the flipped SO(10) scenario offers an attractive option to break the
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The unification ansatz predicts the existence of intermediate scales in the range 
1010÷14 GeV 
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45H ⊕ 16H minimally required to break SO(10) to the SM

9

B. 16 only (µ = a1 = a2 = α = β = τ = 0)

In analogy to the discussion for the 45, in this case for λ2 = 0 the symmetry is enhanced to O(32). The spontaneous
breaking of O(32) to O(31) due to the 16 VEV χR, leads to 31 goldstone modes, as it can be explicitly checked from
the spectrum. The gauge SO(10) symmetry is broken to SU(5). Therefore 45-24=21 WGB are eaten by gauge fields
and 31-21=10 PGB remain in the scalar spectrum. Their masses receive contributions from the explicit breaking term
λ2.

C. A trivial 45-16 potential (a2=λ2=β=τ=0)

When only trivial invariants of both 45 and 16 are considered ( moduli terms) the global symmetry of V0 is
O(45) ⊗ O(32). It is then broken spontaneously into O(44) ⊗ O(31) by the 45 and 16 VEVs yielding 44+31=75
GB in the scalar spectrum. The gauge SO(10) symmetry is at the same time broken down to the SM gauge group.
Therefore 75-33=42 PGB are left in the spectrum. Their masses should generally receive contributions from the
explicitly breaking terms a2, λ2, β and τ .

SO(10)
ωY−−→ 3c 2L 2R 1B−L

ωR−−→ 3c 2L 1R 1B−L
χR−−→ 3c 2L 1Y (31)

SO(10)
ωR−−→ 4C 2L 1R

ωY−−→ 3c 2L 1R 1B−L
χR−−→ 3c 2L 1Y (32)

SO(10)
MG−−−−→

〈45H〉
3c 2L 2R 1B−L

MI−−−−→
〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−→

〈16H〉 or 〈126H〉
3c 2L 1Y (33)

SO(10)
MG−−−−→

〈45H〉
4C 2L 1R

MI−−−−→
〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−→

〈16H〉 or 〈126H〉
3c 2L 1Y (34)

SO(10)
MG−−−−−−−−→

ωY ⊂ 〈45H〉
3c 2L 2R 1B−L

MI−−−−−−−−→
ωR ⊂ 〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−−−−−→

χR ⊂ 〈16H〉 or 〈126H〉
3c 2L 1Y (35)

SO(10)
MG−−−−−−−−→

ωR ⊂ 〈45H〉
4C 2L 1R

MI−−−−−−−−→
ωY ⊂ 〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−−−−−→

χR ⊂ 〈16H〉 or 〈126H〉
3c 2L 1Y (36)

SO(10)
MG−−−−−−−−−−→

ωB−L ⊂ 〈45H〉
3c 2L 2R 1B−L

MI−−−−−−−−→
ωR ⊂ 〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−−−−−→

χR ⊂ 〈16H〉 or 〈126H〉
3c 2L 1Y (37)

SO(10)
MG−−−−−−−−→

ωR ⊂ 〈45H〉
4C 2L 1R

MI−−−−−−−−−−→
ωB−L ⊂ 〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−−−−−→

χR ⊂ 〈16H〉 or 〈126H〉
3c 2L 1Y (38)

SO(10)
MG−−−−−−−−−−→

ωB−L ⊂ 〈45H〉
3c 2L 2R 1B−L

MI−−−−−−−−→
ωR ⊂ 〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−→

χR ⊂ 〈16H〉
3c 2L 1Y (39)

SO(10)
MG−−−−−−−−→

ωR ⊂ 〈45H〉
4C 2L 1R

MI−−−−−−−−−−→
ωB−L ⊂ 〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−→

χR ⊂ 〈16H〉
3c 2L 1Y (40)

Global: O(45)⊗O(32)
〈45H〉−−−−→
〈16H〉

O(44)⊗O(31) =⇒ 44 + 31 = 75 GB (41)

Local: SO(10)
〈45H〉−−−−→
〈16H〉

SM =⇒ 33 WGB (42)

75− 33 = 42 PGB
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I. INTRODUCTION

It has been shown recently [1, 2] that quantum effects solve the long-standing issue [3] of the incompatibility between
the dynamics of a set of Higgs sectors in the renormalizable non-supersymmetric SO(10) grand unified theory (GUT)
and the gauge unification constraints. In particular, such a minimal grand unified scenarios not only support viable
SO(10) breaking patterns passing through intermediate 421 or 3221 gauge symmetries (or their 3211 intersection),
but it also exhibits all the needed ingredients for a potentially realistic description of the Standard Model (SM) flavor
structure.

On the other hand, the simplest scenario featuring the Higgs scalars in 10H ⊕ 16H ⊕ 45H of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric models, the B − L breaking scale MB−L turns out to be
generally smaller than the GUT scale MG, by a few orders of magnitude. Thus, the scale of the right-handed (RH)
neutrino masses MN ∼ M2

B−L/MP emerging first at the d = 5 level from an operator of the form 162F (16
∗
H)2/MP

(with MP typically identified with the Planck scale) undershoots by orders of magnitude the range of about 1012 to
1014 GeV naturally suggested by the seesaw implementation.

MG $ MI > MB−L (1)
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〈
27 27

〉
(2)

MN ∼
(α
π

)
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MG
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∗
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(5)

10H 16H 45H 45V 126H 45H 54H 210H 〈16H〉 = 0 (6)

Y10
√
α (7)

〈16H〉 ∼ MB−L ( MG (8)

16F 16F 126
∗
H ⊃ MN ∼ 〈126∗H〉 ∼ MB−L (9)

162F 16
2
H/MP (10)

W = 452H + 16H16H + 16H45H16H (11)

| 〈16H〉 | = |
〈
16H

〉
| (12)

The unification ansatz predicts the existence of intermediate scales in the range 
1010÷14 GeV 
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The dynamics of the Higgs sector does not support gauge coupling unification
[Yasuè (1981), Anastaze, Derendinger, Buccella (1983), Babu, Ma (1985)] 

45H ⊕ 16H minimally required to break SO(10) to the SM

where                           by unification constraints
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B. 16 only (µ = a1 = a2 = α = β = τ = 0)

In analogy to the discussion for the 45, in this case for λ2 = 0 the symmetry is enhanced to O(32). The spontaneous
breaking of O(32) to O(31) due to the 16 VEV χR, leads to 31 goldstone modes, as it can be explicitly checked from
the spectrum. The gauge SO(10) symmetry is broken to SU(5). Therefore 45-24=21 WGB are eaten by gauge fields
and 31-21=10 PGB remain in the scalar spectrum. Their masses receive contributions from the explicit breaking term
λ2.

C. A trivial 45-16 potential (a2=λ2=β=τ=0)

When only trivial invariants of both 45 and 16 are considered ( moduli terms) the global symmetry of V0 is
O(45) ⊗ O(32). It is then broken spontaneously into O(44) ⊗ O(31) by the 45 and 16 VEVs yielding 44+31=75
GB in the scalar spectrum. The gauge SO(10) symmetry is at the same time broken down to the SM gauge group.
Therefore 75-33=42 PGB are left in the spectrum. Their masses should generally receive contributions from the
explicitly breaking terms a2, λ2, β and τ .
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O(44)⊗O(31) =⇒ 44 + 31 = 75 GB (41)

Local: SO(10)
〈45H〉−−−−→
〈16H〉

SM =⇒ 33 WGB (42)

75− 33 = 42 PGB
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NO GO !?

The unification ansatz predicts the existence of intermediate scales in the range 
1010÷14 GeV 
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Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where

V0 = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 (11)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 (12)

V45H16H = α (16†H16H)Tr 452H (13)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 + a2 Tr 45

4
H (14)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 + λ2 (16H Γ 16H)(16†H Γ 16†H) (15)

V45H16H = α (16†H16H)Tr 452H + β 16†H452H16H + τ 16†H45H16H (16)

The mass terms as well as the coupling constants above are real by hermiticity. Note also that linear and cubic
Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.
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45H ⊕ 16H  potential analysed long ago [Buccella, Ruegg, Savoy (1980)] 

THE LOCKING STATES

Luca Di Luzio (SISSA, Trieste)   -   Unification without supersymmetry: where do we stand ?   -   Planck 2011   -   4/8



4

Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where

V0 = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 (11)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 (12)

V45H16H = α (16†H16H)Tr 452H (13)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 + a2 Tr 45

4
H (14)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 + λ2 (16H Γ 16H)(16†H Γ 16†H) (15)

V45H16H = α (16†H16H)Tr 452H + β 16†H452H16H + τ 16†H45H16H (16)
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tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.
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∂2V0

∂φ2
ab

= 2a2(ω2
R + ω2

Y + ωRωY + φaiφia + φbiφib) +
β

2
χ2

R + 32(a1 +
3
16

a2)φ2
ab − 2a2φ

2
ab (66)

∂2V0

∂φab∂φcd
= 2a2(φa[cφd]b) +

β

2
χ2

R(σabσcd)16,16 + 32(a1 +
3
16

a2)φabφcd (67)

∂2V0

∂χ∗a∂χa
= ... (68)

∂2V0

∂φab∂χc
= ... (69)

Note that in [4] they consider the case in which
〈φab〉 = 0. Furthermore in [4] (σabσcd)16,16 is re-
placed by Re [(σabσcd)16,16] (I don’t understand why
...).

IV. SCALAR MASS MATRICES

In this section we want to construct the scalar
mass matrices after the first stage (two or three
steps) of the symmetry breaking, where the remnant
gauge symmetry group is the SM one (3c, 2L, 1Y ).

In general we can express a SM field ΨJ as a linear
combination of SO(10) fields ψa in the following way

ΨJ = ca
Jψa , (70)

where the coefficients ca
J depend on the embedding

of the SM into SO(10). This relation can be inverted
(I checked explicitly that ca

J is unitary, but I don’t
understand why ... )

ψa = (c−1)J
aΨJ = (c†)J

aΨJ = (c∗)a
JΨJ . (71)

On the other hand, to obtain the information on the
mass matrices one has to write the expression for the
second derivative. Since

∂

∂ΨJ
=

∂ψa

∂ΨJ

∂

∂ψa
= (c∗)a

J
∂

∂ψa
, (72)

and

∂

∂Ψ∗
J

=
∂ψ∗a
∂Ψ∗

J

∂

∂ψ∗a
= ca

J
∂

∂ψ∗a
, (73)

one has

∂2

∂Ψ∗
J∂ΨJ

= ca
J(c∗)b

J
∂2

∂ψ∗a∂ψb
. (74)

As an example let’s compute the contribution of
φab to the SM states (1, 3, 0) and (8, 1, 0). It is

enough to consider the contribution of one compo-
nent of each multiplet, being the state degenerate at
the SM level. Using Michal’s magic decomposition
(See [5] for the meaning of the quantum numbers.)
and matching the Cartan subalgebra 12 34 56 78 90
with the one used so far 03 12 45 78 69, we have

(0, 0, 0, 0, 2, 0, 0, 0) =
1√
2
(φ03 − φ12) , (75)

for the triplet, and

(3, 0, 0, 0, 0, 0, 0, 0) =
1√
2
(φ69 − φ45) , (76)

for the octet. Then the masses are found to be

M2(1, 3, 0) =
1
2

∂2V0

∂φ2
03

+
1
2

∂2V0

∂φ2
12

− ∂2V0

∂φ03∂φ12

= 2a2(ωY − ωR)(ωY + 2ωR) , (77)

M2(8, 1, 0) =
1
2

∂2V0

∂φ2
69

+
1
2

∂2V0

∂φ2
45

− ∂2V0

∂φ69∂φ45

= 2a2(ωR − ωY )(ωR + 2ωY ) , (78)

where we have used Eqs. (66)–(67) and the explicit
values for the product of sigma matrices given in
Appendix B.

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (79)

M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (80)

⇒ (81)

a2 < 0 (82)

−1 ≤ ωY /ωR ≤ 1
2

(83)

From the positivity of the scalar states (1,3,0) and (8,1,0) ⊂ 45H

[ Yasuè (1981), Anastaze, Derendinger, Buccella (1983), Babu, Ma (1985)] 

8

C. Constraints on the potential parameters

The parameters (couplings and VEVs) of the scalar potential are constrained by the requirements of boundedness
and the absence of tachyonic states, enssuring that the vacuum is stable and the stationary points correspond to
physical minima.

Following the analysis in Appendix B the former implies

a1 > − 13
80a2 , λ1 > 0 . (24)

while the absence of tachyons in the physical spectrum yields

a2 < 0 , −2 < ωY /ωR < − 1
2 . (25)

This can be seen easily from the shape of the tree-level masses of the (8, 1, 0) and (1, 3, 0) SM sub-multiplets of 45H :

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (26)
M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (27)

M2(1, 3, 0) = 2a2(ωB−L − ωR)(ωB−L + 2ωR) (28)

M2(8, 1, 0) = 2a2(ωR − ωB−L)(ωR + 2ωB−L) (29)

which can not be simultaneously positive unless (25) is enforced. Let us also remark that in the τ = 0 limit
(corresponding to an extra Z2 symmetry Φ → −Φ) one recovers the results in [24], namely

a2 < 0 , −1 ≤ ωY /ωR ≤ − 2
3 and β > 0 . (30)

In either case one concludes [31] that the only vacuum configurations allowed are those in the close vicinity of the
flipped 5′ 1Z′ setting. Hence, the large hierarchy (of at least four orders of magnitude) between ωR and ωY , required
by gauge coupling unification (see chains VIIIb and XIIb in [36]) cannot be achieved.

This is the key point of the classical argument that the non-SUSY SO(10) GUTs with only the adjoint responsible
for the SO(10) breakdown can not support the phenomenologically favoured symmetry breaking chains. However, as
we shall see later in Sect. V, the qualitative features of the scalar spectrum can change significantly at the quantum
level and, in principle, a new room can open for a successfull implementation of the desired pattern of the intermediate
scales.

IV. UNDERSTANDING THE SCALAR SPECTRUM

In doing so, we shall strongly benefit from a detailed comprehension of the scalar spectrum which, in particular,
consists in understanding the accidental global symmetries restored in various corners of the parametric space and the
pseudo-Goldstone boson (PGB) nature of the corresponding states. Let us thus clasify one by one the most interesting
limits and provide the PGB counting in each case.

A. 45 only (ν = λ1 = λ2 = α = β = τ = 0)

When a2 = 0, i.e. when only trivial 45H invariants are considered, the scalar potential V0 has an enhanced global
symmetry in the 45 sector given by O(45). After the SSB due to the 45 VEV ω = ωR = −ωY the symmetry is broken
down to O(44) and we expect 44 GB in the scalar spectrum as it is shown explicitly in Appendix ??.

In this case, the gauge SO(10) symmetry is broken to SU(5)′ × U(1)X . Therefore 45-25=20 would-be GB (WGB)
are eaten by gauge fields and 44-20=24 pseudo-GB (PGB) remain in the scalar spectrum. A mass is generated by the
explicit breaking term a2.

8

C. Constraints on the potential parameters

The parameters (couplings and VEVs) of the scalar potential are constrained by the requirements of boundedness
and the absence of tachyonic states, enssuring that the vacuum is stable and the stationary points correspond to
physical minima.

Following the analysis in Appendix B the former implies

a1 > − 13
80a2 , λ1 > 0 . (24)

while the absence of tachyons in the physical spectrum yields

a2 < 0 , −2 < ωY /ωR < − 1
2 . (25)

This can be seen easily from the shape of the tree-level masses of the (8, 1, 0) and (1, 3, 0) SM sub-multiplets of 45H :

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (26)
M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (27)

M2(1, 3, 0) = 2a2(ωB−L − ωR)(ωB−L + 2ωR) (28)

M2(8, 1, 0) = 2a2(ωR − ωB−L)(ωR + 2ωB−L) (29)

which can not be simultaneously positive unless (25) is enforced. Let us also remark that in the τ = 0 limit
(corresponding to an extra Z2 symmetry Φ → −Φ) one recovers the results in [24], namely

a2 < 0 , −1 ≤ ωY /ωR ≤ − 2
3 and β > 0 . (30)

In either case one concludes [31] that the only vacuum configurations allowed are those in the close vicinity of the
flipped 5′ 1Z′ setting. Hence, the large hierarchy (of at least four orders of magnitude) between ωR and ωY , required
by gauge coupling unification (see chains VIIIb and XIIb in [36]) cannot be achieved.

This is the key point of the classical argument that the non-SUSY SO(10) GUTs with only the adjoint responsible
for the SO(10) breakdown can not support the phenomenologically favoured symmetry breaking chains. However, as
we shall see later in Sect. V, the qualitative features of the scalar spectrum can change significantly at the quantum
level and, in principle, a new room can open for a successfull implementation of the desired pattern of the intermediate
scales.

IV. UNDERSTANDING THE SCALAR SPECTRUM

In doing so, we shall strongly benefit from a detailed comprehension of the scalar spectrum which, in particular,
consists in understanding the accidental global symmetries restored in various corners of the parametric space and the
pseudo-Goldstone boson (PGB) nature of the corresponding states. Let us thus clasify one by one the most interesting
limits and provide the PGB counting in each case.

A. 45 only (ν = λ1 = λ2 = α = β = τ = 0)

When a2 = 0, i.e. when only trivial 45H invariants are considered, the scalar potential V0 has an enhanced global
symmetry in the 45 sector given by O(45). After the SSB due to the 45 VEV ω = ωR = −ωY the symmetry is broken
down to O(44) and we expect 44 GB in the scalar spectrum as it is shown explicitly in Appendix ??.

In this case, the gauge SO(10) symmetry is broken to SU(5)′ × U(1)X . Therefore 45-25=20 would-be GB (WGB)
are eaten by gauge fields and 44-20=24 pseudo-GB (PGB) remain in the scalar spectrum. A mass is generated by the
explicit breaking term a2.

stationary points correspond to physical minima. In particular, from the shape of the tree level
masses of the (8, 1, 0) and (1, 3, 0) SM sub-multiplets of 45H :

M2(1, 3, 0) = 2a2(ωB−L − ωR)(ωB−L + 2ωR) , (7)

M2(8, 1, 0) = 2a2(ωR − ωB−L)(ωR + 2ωB−L) , (8)

which can not be simultaneously positive unless

a2 < 0 , −2 < ωB−L/ωR < −1
2 , (9)

one concludes that the only vacuum configurations allowed are those in the close vicinity
of the flipped SU(5) ⊗ U(1)Z setting. Hence, the large hierarchy (of about four orders of
magnitude) between ωR and ωB−L, required by gauge coupling unification (cf. chains VIII and
XII in Ref. [10]) cannot be achieved. This is the key point of the classical argument that the
nonsupersymmetric SO(10) GUTs with only one adjoint responsible for the first stage of the
SO(10) breakdown can not support the phenomenologically favoured symmetry breaking chains.

2.1. A tree level accident
The rationale for understanding the strong correlation among the masses of the states (1, 3, 0)
and (8, 1, 0) can be obtained by looking at the enhancement of the global symmetry in a trivial
limit of the scalar potential. When only trivial invariants of both 45H and 16H are considered
(a2 = λ2 = β = τ = 0) the global symmetry of V0 is O(45) ⊗ O(32). This is then broken
spontaneously into O(44) ⊗ O(31) by the 45H and 16H VEVs yielding 44+31=75 Goldstone
bosons (GB) in the scalar spectrum. The gauge SO(10) symmetry is at the same time broken
down to the SM gauge group. Therefore 75-33=42 pseudo-Goldstone bosons (PGB) are left
in the spectrum and their masses should generally receive contributions from all the explicitly
breaking terms a2, λ2, β and τ . Since the states (1, 3, 0) and (8, 1, 0) belong to this set of PGB,
generally one would expect their mass to depend on all of a2, λ2, β, τ parameters. The absence
of mass contributions proportional to λ2, β, τ is just an easily understood accident of the tree
level potential [9], but nothing prevents those couplings from contributing to the PGB masses
at the quantum level.

2.2. The quantum vacuum
The relevant one-loop correction to the (1, 3, 0) and (8, 1, 0) PGB masses can be conveniently
computed by means of the one-loop effective potential (EP). The one-loop EP can be formally
written as

Veff = V0 +∆Vs +∆Vf +∆Vg , (10)

where ∆Vs,f,g denote the contributions from scalars, fermions and gauge bosons respectively. In
dimensional regularization with modified minimal subtraction (MS) and in the Landau gauge,
they are given by

∆Vi(45H , 16H , µ) =
αi

64π2
Tr

[

M4
i (45H , 16H)

(

log
M2

i (45H , 16H )

µ2
− βi

)]

, (11)

where (αs,αf ,αg) = (1,−2, 3), (βs,βf ,βg) = (32 ,
3
2 ,

5
6) and Ms, Mf and Mg are the functional

scalar, fermion and gauge boson mass matrices respectively, as obtained from the tree level
potential. In the following we will neglect the fermionic component of the EP since there are no
fermionic states at the unification scale MG. The running masses m2

ab are defined by

m2
ab ≡

∂2Veff(45H , 16H , µ)

∂ψa∂ψb

∣

∣

∣

〈ψ〉
, (12)
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45H ⊕ 16H  potential analysed long ago [Buccella, Ruegg, Savoy (1980)] 
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Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where

V0 = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 (11)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 (12)

V45H16H = α (16†H16H)Tr 452H (13)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 + a2 Tr 45

4
H (14)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 + λ2 (16H Γ 16H)(16†H Γ 16†H) (15)

V45H16H = α (16†H16H)Tr 452H + β 16†H452H16H + τ 16†H45H16H (16)

The mass terms as well as the coupling constants above are real by hermiticity. Note also that linear and cubic
Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.
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Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.

THE LOCKING STATES
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∂2V0

∂φ2
ab

= 2a2(ω2
R + ω2

Y + ωRωY + φaiφia + φbiφib) +
β

2
χ2

R + 32(a1 +
3
16

a2)φ2
ab − 2a2φ

2
ab (66)

∂2V0

∂φab∂φcd
= 2a2(φa[cφd]b) +

β

2
χ2

R(σabσcd)16,16 + 32(a1 +
3
16

a2)φabφcd (67)

∂2V0

∂χ∗a∂χa
= ... (68)

∂2V0

∂φab∂χc
= ... (69)

Note that in [4] they consider the case in which
〈φab〉 = 0. Furthermore in [4] (σabσcd)16,16 is re-
placed by Re [(σabσcd)16,16] (I don’t understand why
...).

IV. SCALAR MASS MATRICES

In this section we want to construct the scalar
mass matrices after the first stage (two or three
steps) of the symmetry breaking, where the remnant
gauge symmetry group is the SM one (3c, 2L, 1Y ).

In general we can express a SM field ΨJ as a linear
combination of SO(10) fields ψa in the following way

ΨJ = ca
Jψa , (70)

where the coefficients ca
J depend on the embedding

of the SM into SO(10). This relation can be inverted
(I checked explicitly that ca

J is unitary, but I don’t
understand why ... )

ψa = (c−1)J
aΨJ = (c†)J

aΨJ = (c∗)a
JΨJ . (71)

On the other hand, to obtain the information on the
mass matrices one has to write the expression for the
second derivative. Since

∂

∂ΨJ
=

∂ψa

∂ΨJ

∂

∂ψa
= (c∗)a

J
∂

∂ψa
, (72)

and

∂

∂Ψ∗
J

=
∂ψ∗a
∂Ψ∗

J

∂

∂ψ∗a
= ca

J
∂

∂ψ∗a
, (73)

one has

∂2

∂Ψ∗
J∂ΨJ

= ca
J(c∗)b

J
∂2

∂ψ∗a∂ψb
. (74)

As an example let’s compute the contribution of
φab to the SM states (1, 3, 0) and (8, 1, 0). It is

enough to consider the contribution of one compo-
nent of each multiplet, being the state degenerate at
the SM level. Using Michal’s magic decomposition
(See [5] for the meaning of the quantum numbers.)
and matching the Cartan subalgebra 12 34 56 78 90
with the one used so far 03 12 45 78 69, we have

(0, 0, 0, 0, 2, 0, 0, 0) =
1√
2
(φ03 − φ12) , (75)

for the triplet, and

(3, 0, 0, 0, 0, 0, 0, 0) =
1√
2
(φ69 − φ45) , (76)

for the octet. Then the masses are found to be

M2(1, 3, 0) =
1
2

∂2V0

∂φ2
03

+
1
2

∂2V0

∂φ2
12

− ∂2V0

∂φ03∂φ12

= 2a2(ωY − ωR)(ωY + 2ωR) , (77)

M2(8, 1, 0) =
1
2

∂2V0

∂φ2
69

+
1
2

∂2V0

∂φ2
45

− ∂2V0

∂φ69∂φ45

= 2a2(ωR − ωY )(ωR + 2ωY ) , (78)

where we have used Eqs. (66)–(67) and the explicit
values for the product of sigma matrices given in
Appendix B.

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (79)

M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (80)

⇒ (81)

a2 < 0 (82)

−1 ≤ ωY /ωR ≤ 1
2

(83)

From the positivity of the scalar states (1,3,0) and (8,1,0) ⊂ 45H

[ Yasuè (1981), Anastaze, Derendinger, Buccella (1983), Babu, Ma (1985)] 
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C. Constraints on the potential parameters

The parameters (couplings and VEVs) of the scalar potential are constrained by the requirements of boundedness
and the absence of tachyonic states, enssuring that the vacuum is stable and the stationary points correspond to
physical minima.

Following the analysis in Appendix B the former implies

a1 > − 13
80a2 , λ1 > 0 . (24)

while the absence of tachyons in the physical spectrum yields

a2 < 0 , −2 < ωY /ωR < − 1
2 . (25)

This can be seen easily from the shape of the tree-level masses of the (8, 1, 0) and (1, 3, 0) SM sub-multiplets of 45H :

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (26)
M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (27)

M2(1, 3, 0) = 2a2(ωB−L − ωR)(ωB−L + 2ωR) (28)

M2(8, 1, 0) = 2a2(ωR − ωB−L)(ωR + 2ωB−L) (29)

which can not be simultaneously positive unless (25) is enforced. Let us also remark that in the τ = 0 limit
(corresponding to an extra Z2 symmetry Φ → −Φ) one recovers the results in [24], namely

a2 < 0 , −1 ≤ ωY /ωR ≤ − 2
3 and β > 0 . (30)

In either case one concludes [31] that the only vacuum configurations allowed are those in the close vicinity of the
flipped 5′ 1Z′ setting. Hence, the large hierarchy (of at least four orders of magnitude) between ωR and ωY , required
by gauge coupling unification (see chains VIIIb and XIIb in [36]) cannot be achieved.

This is the key point of the classical argument that the non-SUSY SO(10) GUTs with only the adjoint responsible
for the SO(10) breakdown can not support the phenomenologically favoured symmetry breaking chains. However, as
we shall see later in Sect. V, the qualitative features of the scalar spectrum can change significantly at the quantum
level and, in principle, a new room can open for a successfull implementation of the desired pattern of the intermediate
scales.

IV. UNDERSTANDING THE SCALAR SPECTRUM

In doing so, we shall strongly benefit from a detailed comprehension of the scalar spectrum which, in particular,
consists in understanding the accidental global symmetries restored in various corners of the parametric space and the
pseudo-Goldstone boson (PGB) nature of the corresponding states. Let us thus clasify one by one the most interesting
limits and provide the PGB counting in each case.

A. 45 only (ν = λ1 = λ2 = α = β = τ = 0)

When a2 = 0, i.e. when only trivial 45H invariants are considered, the scalar potential V0 has an enhanced global
symmetry in the 45 sector given by O(45). After the SSB due to the 45 VEV ω = ωR = −ωY the symmetry is broken
down to O(44) and we expect 44 GB in the scalar spectrum as it is shown explicitly in Appendix ??.

In this case, the gauge SO(10) symmetry is broken to SU(5)′ × U(1)X . Therefore 45-25=20 would-be GB (WGB)
are eaten by gauge fields and 44-20=24 pseudo-GB (PGB) remain in the scalar spectrum. A mass is generated by the
explicit breaking term a2.
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stationary points correspond to physical minima. In particular, from the shape of the tree level
masses of the (8, 1, 0) and (1, 3, 0) SM sub-multiplets of 45H :

M2(1, 3, 0) = 2a2(ωB−L − ωR)(ωB−L + 2ωR) , (7)

M2(8, 1, 0) = 2a2(ωR − ωB−L)(ωR + 2ωB−L) , (8)

which can not be simultaneously positive unless

a2 < 0 , −2 < ωB−L/ωR < −1
2 , (9)

one concludes that the only vacuum configurations allowed are those in the close vicinity
of the flipped SU(5) ⊗ U(1)Z setting. Hence, the large hierarchy (of about four orders of
magnitude) between ωR and ωB−L, required by gauge coupling unification (cf. chains VIII and
XII in Ref. [10]) cannot be achieved. This is the key point of the classical argument that the
nonsupersymmetric SO(10) GUTs with only one adjoint responsible for the first stage of the
SO(10) breakdown can not support the phenomenologically favoured symmetry breaking chains.

2.1. A tree level accident
The rationale for understanding the strong correlation among the masses of the states (1, 3, 0)
and (8, 1, 0) can be obtained by looking at the enhancement of the global symmetry in a trivial
limit of the scalar potential. When only trivial invariants of both 45H and 16H are considered
(a2 = λ2 = β = τ = 0) the global symmetry of V0 is O(45) ⊗ O(32). This is then broken
spontaneously into O(44) ⊗ O(31) by the 45H and 16H VEVs yielding 44+31=75 Goldstone
bosons (GB) in the scalar spectrum. The gauge SO(10) symmetry is at the same time broken
down to the SM gauge group. Therefore 75-33=42 pseudo-Goldstone bosons (PGB) are left
in the spectrum and their masses should generally receive contributions from all the explicitly
breaking terms a2, λ2, β and τ . Since the states (1, 3, 0) and (8, 1, 0) belong to this set of PGB,
generally one would expect their mass to depend on all of a2, λ2, β, τ parameters. The absence
of mass contributions proportional to λ2, β, τ is just an easily understood accident of the tree
level potential [9], but nothing prevents those couplings from contributing to the PGB masses
at the quantum level.

2.2. The quantum vacuum
The relevant one-loop correction to the (1, 3, 0) and (8, 1, 0) PGB masses can be conveniently
computed by means of the one-loop effective potential (EP). The one-loop EP can be formally
written as

Veff = V0 +∆Vs +∆Vf +∆Vg , (10)

where ∆Vs,f,g denote the contributions from scalars, fermions and gauge bosons respectively. In
dimensional regularization with modified minimal subtraction (MS) and in the Landau gauge,
they are given by

∆Vi(45H , 16H , µ) =
αi

64π2
Tr

[

M4
i (45H , 16H)

(

log
M2

i (45H , 16H )

µ2
− βi

)]

, (11)

where (αs,αf ,αg) = (1,−2, 3), (βs,βf ,βg) = (32 ,
3
2 ,

5
6) and Ms, Mf and Mg are the functional

scalar, fermion and gauge boson mass matrices respectively, as obtained from the tree level
potential. In the following we will neglect the fermionic component of the EP since there are no
fermionic states at the unification scale MG. The running masses m2

ab are defined by

m2
ab ≡

∂2Veff(45H , 16H , µ)

∂ψa∂ψb

∣

∣

∣

〈ψ〉
, (12)

stationary points correspond to physical minima. In particular, from the shape of the tree level
masses of the (8, 1, 0) and (1, 3, 0) SM sub-multiplets of 45H :

M2(1, 3, 0) = 2a2(ωB−L − ωR)(ωB−L + 2ωR) , (7)

M2(8, 1, 0) = 2a2(ωR − ωB−L)(ωR + 2ωB−L) , (8)
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2 , (9)

one concludes that the only vacuum configurations allowed are those in the close vicinity
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2.1. A tree level accident
The rationale for understanding the strong correlation among the masses of the states (1, 3, 0)
and (8, 1, 0) can be obtained by looking at the enhancement of the global symmetry in a trivial
limit of the scalar potential. When only trivial invariants of both 45H and 16H are considered
(a2 = λ2 = β = τ = 0) the global symmetry of V0 is O(45) ⊗ O(32). This is then broken
spontaneously into O(44) ⊗ O(31) by the 45H and 16H VEVs yielding 44+31=75 Goldstone
bosons (GB) in the scalar spectrum. The gauge SO(10) symmetry is at the same time broken
down to the SM gauge group. Therefore 75-33=42 pseudo-Goldstone bosons (PGB) are left
in the spectrum and their masses should generally receive contributions from all the explicitly
breaking terms a2, λ2, β and τ . Since the states (1, 3, 0) and (8, 1, 0) belong to this set of PGB,
generally one would expect their mass to depend on all of a2, λ2, β, τ parameters. The absence
of mass contributions proportional to λ2, β, τ is just an easily understood accident of the tree
level potential [9], but nothing prevents those couplings from contributing to the PGB masses
at the quantum level.

2.2. The quantum vacuum
The relevant one-loop correction to the (1, 3, 0) and (8, 1, 0) PGB masses can be conveniently
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written as
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2 ,

5
6) and Ms, Mf and Mg are the functional

scalar, fermion and gauge boson mass matrices respectively, as obtained from the tree level
potential. In the following we will neglect the fermionic component of the EP since there are no
fermionic states at the unification scale MG. The running masses m2

ab are defined by
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∂ψa∂ψb

∣

∣

∣

〈ψ〉
, (12)

Gauge unification requires an hierarchy between ωB-L and ωR !

45H ⊕ 16H  potential analysed long ago [Buccella, Ruegg, Savoy (1980)] 
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Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where

V0 = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 (11)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 (12)

V45H16H = α (16†H16H)Tr 452H (13)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 + a2 Tr 45

4
H (14)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 + λ2 (16H Γ 16H)(16†H Γ 16†H) (15)

V45H16H = α (16†H16H)Tr 452H + β 16†H452H16H + τ 16†H45H16H (16)

The mass terms as well as the coupling constants above are real by hermiticity. Note also that linear and cubic
Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.

A TREE LEVEL ACCIDENT

4

2×
(
16H ⊕ 16H

)
⊕ 45H (28)

α− #= 0 and/or Φν #= Φe (29)

r1,2 α1,2 (30)

ρ τ (31)

Ω (32)

M2
E/MP > Mf (33)

16H16H54H or 16H16H54H (34)

tanβ ∼ 1 (35)

45H ⊕ 16H ⊕ 16H (36)

α1 = α2 and φν1 − φν2 = φe1 − φe2 (37)

α1 #= α2 and/or φν1 − φν2 #= φe1 − φe2 (38)

16⊕ 16

78 ≡ 450 ⊕ 16−3 ⊕ 16+3 ⊕ 10 (39)

27 ≡ 16+1 ⊕ 10−2 ⊕ 1+4 (40)

tanβ ∼ 1 (41)

a2 = λ2 = β = τ = 0 (42)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least

Global symmetries of the potential in the limit 
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tunings to be imposed onto the scalar potential [17] so that all the symmetry breaking steps are performed
at the desired scales.

On the technical side one should identify all the Higgs multiplets needed by the breaking pattern under
consideration and keep them according to the gauge symmetry down to the scale of their VEVs. This
typically pulls down a large number of scalars in scenarios where 126H provides the B − L breakdown.

On the other hand, one must take into account that the role of 126H is twofold: in addition to triggering
the G1 breaking it plays a relevant role in the Yukawa sector (Eq. (1)) where it provides the necessary
breaking of the down quark - charged lepton mass degeneracy. For this to work one needs a reasonably
large admixture of the 126H component in the effective electroweak doublets. Since (2, 2, 1)10 can mix with
(2, 2, 15)126 only below the Pati-Salam breaking scale, both fields must be present at the Pati-Salam level
(otherwise the scalar doublet mass matrix does not provide large enough components of both these multiplets
in the light Higgs fields).

Note that the same argument applies also to the 2L1R4C intermediate stage when one must retain the
doublet component of 126H , namely (2, + 1

2 , 15)126, in order for it to eventually admix with (2, + 1
2 , 1)10 in

the light Higgs sector. On the other hand, at the 2L2R1X3c and 2L1R1X3c stages, the (minimal) survival of
only one combination of the φ10 and φ126 scalar doublets (see Table II) is compatible with the Yukawa sector
constraints because the degeneracy between the quark and lepton spectra has already been smeared-out by
the Pati-Salam breakdown.

In summary, potentially realistic renormalizable Yukawa textures in settings with well-separated SO(10)
and Pati-Salam breaking scales call for an additional fine tuning in the Higgs sector. In the scenarios with
126H , the 10H bidoublet (2, 2, 1)10, included in Refs [6–9], must be paired at the 2L2R4C scale with an extra
(2, 2, 15)126 scalar bidoublet (or (2, + 1

2 , 1)10 with (2, + 1
2 , 15)126 at the 2L1R4C stage). This can affect the

running of the gauge couplings in chains I, II, III, V, VI, VII, X, XI and XII.

For the sake of comparison with previous studies [6–9] we shall not include the φ126 multiplets in the first
part of the analysis. Rather, we shall comment on their relevance for gauge unification in Sect. IVC.

III. TWO-LOOP GAUGE RENORMALIZATION GROUP EQUATIONS

In this section we report, in order to fix a consistent notation, the two-loop renormalization group equations
(RGEs) for the gauge couplings. We consider a gauge group of the form U(1)1⊗ ...⊗U(1)N ⊗G1⊗ ...⊗GN ′ ,
where Gi are simple groups.

A. The non-abelian sector

Let us focus first on the non-abelian sector corresponding to G1 ⊗ ... ⊗ GN ′ and defer the full treatment
of the effects due to the extra U(1) factors to section III B. Defining t = log(µ/µ0) we write

dgp

dt
= gp βp (2)

where p = 1, ..., N ′ is the gauge group label. Neglecting for the time being the abelian components, the
β-functions for the G1 × ... × GN ′ gauge couplings read at two-loop level [18–21]:

βp =
g2

p

(4π)2

{
−

11

3
C2(Gp) +

4

3
κS2(Fp) +

1

3
ηS2(Sp) −

2κ

(4π)2
Y4(Fp)

+
g2

p

(4π)2

[
−

34

3
(C2(Gp))

2 +

(
4C2(Fp) +

20

3
C2(Gp)

)
κS2(Fp) +

(
4C2(Sp) +

2

3
C2(Gp)

)
ηS2(Sp)

]

+
g2

q

(4π)2
4
[
κC2(Fq)S2(Fp) + ηC2(Sq)S2(Sp)

]}

where κ = 1, 1
2 for Dirac and Weyl fermions respectively. Correspondingly, η = 1, 1

2 for complex and real
scalar fields. The sum over q $= p corresponding to contributions to βp from the other gauge sectors labelled
by q is understood. Given a fermion F or a scalar S field that transforms according to the representation
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C. A trivial 45-16 potential (a2 =λ2=β=τ =0)

When only trivial invariants of both 45 and 16 are considered ( moduli terms) the global symmetry of V0 is
O(45) ⊗ O(32). It is then broken spontaneously into O(44) ⊗ O(31) by the 45 and 16 VEVs yielding 44+31=75
GB in the scalar spectrum. The gauge SO(10) symmetry is at the same time broken down to the SM gauge group.
Therefore 75-33=42 PGB are left in the spectrum. Their masses should generally receive contributions from the
explicitly breaking terms a2, λ2, β and τ .
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O(44) ⊗ O(31) =⇒ 44 + 31 = 75 GB (17)

Local: SO(10)
〈45H〉−−−−→
〈16H〉

SM =⇒ 33 WGB (18)

75 - 33 = 42 PGB

D. A trivial 45-16 interaction (β = τ = 0)

Turning off just the β and τ -couplings still allows for independent global rotations of the Φ and χ Higgs fields. The
largest global symmetries are those determined by the a2 and λ2 terms in V0 are SO(10)45 and SO(10)16 respectively,
and they are spontaneously broken to global [SU(5)′ ⊗ U(1)] and SU(5) by the VEVs obeying ωR = −ωY and
χR %= 0 respectively. Hence, this setting gives rise to 20 + 21 = 41 GB. The gauged SO(10) is simultaneously broken
down to the SM gauge symmetry (spanned over the intersection of the algebras of the gauged SU(5)′ ⊗ U(1)X and
SU(5) symmetries) and thus 33 WGB are eaten by the gauge bosons. Therefore, 41-33=8 PGB remain in the scalar
spectrum. Thus, there are 8 states that receive contributions from the explicit breaking terms β and τ only.

All of these features can be tested against the explicit derivation of the scalar mass spectrum (see Appendix ??).

E. A tree-level accident

The masses of the states (1, 3, 0) and (8, 1, 0) in Eqs. (12)–(13) depend at the tree level only on the parameter a2.
While the τ term cannot obviously contribute to a tree level 45H mass term, one would generally expect a contri-

bution from the β interaction (proportional to χ2
R). Making the tensor structure explicit, one obtains

β

16
χ2

R (σij)16β(σkl)β16 φijφkl . (19)

Explicit calculation shows, as we already know, a vanishing contribution to the mass of the (1, 3, 0) and (8, 1, 0)
multiplets.

This result is actually more general and it is simply understood by observing that the scalar interaction in Eq. (19)
has the same form of the gauge boson mass from the covariant derivative, c.f. Eq. (C4).

As a consequence, no tree-level mass contribution from the β coupling can arise for the scalars carrying the quantum
numbers of the algebra of the preserved gauge group. This is verified explicitly from inspection of the scalar spectra
on the different vacua (see Sect. ??).

Of course, nothing prevents β and τ interactions from contributing to the masses of (1, 3, 0) and (8, 1, 0) at the
quantum level. For instance, we should expect a one-loop contribution proportional to β2(ω2

Y , ω2
R) when 16H states

are exchanged in the loop (independent on χR, that in realistic cases may be negligible on the unification scale).
At one loop we should also expect contributions from the τ trilinear term. It is relevant to observe that the τ induced

mass correction does not depend on the gauge symmetry breaking: it is an SO(10) symmetric renormalization.
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Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where

V0 = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 (11)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 (12)

V45H16H = α (16†H16H)Tr 452H (13)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 + a2 Tr 45

4
H (14)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 + λ2 (16H Γ 16H)(16†H Γ 16†H) (15)

V45H16H = α (16†H16H)Tr 452H + β 16†H452H16H + τ 16†H45H16H (16)

The mass terms as well as the coupling constants above are real by hermiticity. Note also that linear and cubic
Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.
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2×
(
16H ⊕ 16H

)
⊕ 45H (28)

α− #= 0 and/or Φν #= Φe (29)

r1,2 α1,2 (30)

ρ τ (31)

Ω (32)

M2
E/MP > Mf (33)

16H16H54H or 16H16H54H (34)

tanβ ∼ 1 (35)

45H ⊕ 16H ⊕ 16H (36)

α1 = α2 and φν1 − φν2 = φe1 − φe2 (37)

α1 #= α2 and/or φν1 − φν2 #= φe1 − φe2 (38)

16⊕ 16

78 ≡ 450 ⊕ 16−3 ⊕ 16+3 ⊕ 10 (39)

27 ≡ 16+1 ⊕ 10−2 ⊕ 1+4 (40)

tanβ ∼ 1 (41)

a2 = λ2 = β = τ = 0 (42)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least

Global symmetries of the potential in the limit 
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tunings to be imposed onto the scalar potential [17] so that all the symmetry breaking steps are performed
at the desired scales.

On the technical side one should identify all the Higgs multiplets needed by the breaking pattern under
consideration and keep them according to the gauge symmetry down to the scale of their VEVs. This
typically pulls down a large number of scalars in scenarios where 126H provides the B − L breakdown.

On the other hand, one must take into account that the role of 126H is twofold: in addition to triggering
the G1 breaking it plays a relevant role in the Yukawa sector (Eq. (1)) where it provides the necessary
breaking of the down quark - charged lepton mass degeneracy. For this to work one needs a reasonably
large admixture of the 126H component in the effective electroweak doublets. Since (2, 2, 1)10 can mix with
(2, 2, 15)126 only below the Pati-Salam breaking scale, both fields must be present at the Pati-Salam level
(otherwise the scalar doublet mass matrix does not provide large enough components of both these multiplets
in the light Higgs fields).

Note that the same argument applies also to the 2L1R4C intermediate stage when one must retain the
doublet component of 126H , namely (2, + 1

2 , 15)126, in order for it to eventually admix with (2, + 1
2 , 1)10 in

the light Higgs sector. On the other hand, at the 2L2R1X3c and 2L1R1X3c stages, the (minimal) survival of
only one combination of the φ10 and φ126 scalar doublets (see Table II) is compatible with the Yukawa sector
constraints because the degeneracy between the quark and lepton spectra has already been smeared-out by
the Pati-Salam breakdown.

In summary, potentially realistic renormalizable Yukawa textures in settings with well-separated SO(10)
and Pati-Salam breaking scales call for an additional fine tuning in the Higgs sector. In the scenarios with
126H , the 10H bidoublet (2, 2, 1)10, included in Refs [6–9], must be paired at the 2L2R4C scale with an extra
(2, 2, 15)126 scalar bidoublet (or (2, + 1

2 , 1)10 with (2, + 1
2 , 15)126 at the 2L1R4C stage). This can affect the

running of the gauge couplings in chains I, II, III, V, VI, VII, X, XI and XII.

For the sake of comparison with previous studies [6–9] we shall not include the φ126 multiplets in the first
part of the analysis. Rather, we shall comment on their relevance for gauge unification in Sect. IVC.

III. TWO-LOOP GAUGE RENORMALIZATION GROUP EQUATIONS

In this section we report, in order to fix a consistent notation, the two-loop renormalization group equations
(RGEs) for the gauge couplings. We consider a gauge group of the form U(1)1⊗ ...⊗U(1)N ⊗G1⊗ ...⊗GN ′ ,
where Gi are simple groups.

A. The non-abelian sector

Let us focus first on the non-abelian sector corresponding to G1 ⊗ ... ⊗ GN ′ and defer the full treatment
of the effects due to the extra U(1) factors to section III B. Defining t = log(µ/µ0) we write

dgp

dt
= gp βp (2)

where p = 1, ..., N ′ is the gauge group label. Neglecting for the time being the abelian components, the
β-functions for the G1 × ... × GN ′ gauge couplings read at two-loop level [18–21]:

βp =
g2

p

(4π)2

{
−

11

3
C2(Gp) +

4

3
κS2(Fp) +

1

3
ηS2(Sp) −

2κ

(4π)2
Y4(Fp)

+
g2

p

(4π)2

[
−

34

3
(C2(Gp))

2 +

(
4C2(Fp) +

20

3
C2(Gp)

)
κS2(Fp) +

(
4C2(Sp) +

2

3
C2(Gp)

)
ηS2(Sp)

]

+
g2

q

(4π)2
4
[
κC2(Fq)S2(Fp) + ηC2(Sq)S2(Sp)

]}

where κ = 1, 1
2 for Dirac and Weyl fermions respectively. Correspondingly, η = 1, 1

2 for complex and real
scalar fields. The sum over q $= p corresponding to contributions to βp from the other gauge sectors labelled
by q is understood. Given a fermion F or a scalar S field that transforms according to the representation
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C. A trivial 45-16 potential (a2 =λ2=β=τ =0)

When only trivial invariants of both 45 and 16 are considered ( moduli terms) the global symmetry of V0 is
O(45) ⊗ O(32). It is then broken spontaneously into O(44) ⊗ O(31) by the 45 and 16 VEVs yielding 44+31=75
GB in the scalar spectrum. The gauge SO(10) symmetry is at the same time broken down to the SM gauge group.
Therefore 75-33=42 PGB are left in the spectrum. Their masses should generally receive contributions from the
explicitly breaking terms a2, λ2, β and τ .
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D. A trivial 45-16 interaction (β = τ = 0)

Turning off just the β and τ -couplings still allows for independent global rotations of the Φ and χ Higgs fields. The
largest global symmetries are those determined by the a2 and λ2 terms in V0 are SO(10)45 and SO(10)16 respectively,
and they are spontaneously broken to global [SU(5)′ ⊗ U(1)] and SU(5) by the VEVs obeying ωR = −ωY and
χR %= 0 respectively. Hence, this setting gives rise to 20 + 21 = 41 GB. The gauged SO(10) is simultaneously broken
down to the SM gauge symmetry (spanned over the intersection of the algebras of the gauged SU(5)′ ⊗ U(1)X and
SU(5) symmetries) and thus 33 WGB are eaten by the gauge bosons. Therefore, 41-33=8 PGB remain in the scalar
spectrum. Thus, there are 8 states that receive contributions from the explicit breaking terms β and τ only.

All of these features can be tested against the explicit derivation of the scalar mass spectrum (see Appendix ??).
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bution from the β interaction (proportional to χ2
R). Making the tensor structure explicit, one obtains
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Explicit calculation shows, as we already know, a vanishing contribution to the mass of the (1, 3, 0) and (8, 1, 0)
multiplets.

This result is actually more general and it is simply understood by observing that the scalar interaction in Eq. (19)
has the same form of the gauge boson mass from the covariant derivative, c.f. Eq. (C4).

As a consequence, no tree-level mass contribution from the β coupling can arise for the scalars carrying the quantum
numbers of the algebra of the preserved gauge group. This is verified explicitly from inspection of the scalar spectra
on the different vacua (see Sect. ??).

Of course, nothing prevents β and τ interactions from contributing to the masses of (1, 3, 0) and (8, 1, 0) at the
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Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.
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C. Constraints on the potential parameters

The parameters (couplings and VEVs) of the scalar potential are constrained by the requirements of boundedness
and the absence of tachyonic states, enssuring that the vacuum is stable and the stationary points correspond to
physical minima.

Following the analysis in Appendix B the former implies

a1 > − 13
80a2 , λ1 > 0 . (24)

while the absence of tachyons in the physical spectrum yields

a2 < 0 , −2 < ωY /ωR < − 1
2 . (25)

This can be seen easily from the shape of the tree-level masses of the (8, 1, 0) and (1, 3, 0) SM sub-multiplets of 45H :

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (26)
M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (27)

M2(1, 3, 0) = 2a2(ωB−L − ωR)(ωB−L + 2ωR) (28)

M2(8, 1, 0) = 2a2(ωR − ωB−L)(ωR + 2ωB−L) (29)

which can not be simultaneously positive unless (25) is enforced. Let us also remark that in the τ = 0 limit
(corresponding to an extra Z2 symmetry Φ → −Φ) one recovers the results in [24], namely

a2 < 0 , −1 ≤ ωY /ωR ≤ − 2
3 and β > 0 . (30)

In either case one concludes [31] that the only vacuum configurations allowed are those in the close vicinity of the
flipped 5′ 1Z′ setting. Hence, the large hierarchy (of at least four orders of magnitude) between ωR and ωY , required
by gauge coupling unification (see chains VIIIb and XIIb in [36]) cannot be achieved.

This is the key point of the classical argument that the non-SUSY SO(10) GUTs with only the adjoint responsible
for the SO(10) breakdown can not support the phenomenologically favoured symmetry breaking chains. However, as
we shall see later in Sect. V, the qualitative features of the scalar spectrum can change significantly at the quantum
level and, in principle, a new room can open for a successfull implementation of the desired pattern of the intermediate
scales.

IV. UNDERSTANDING THE SCALAR SPECTRUM

In doing so, we shall strongly benefit from a detailed comprehension of the scalar spectrum which, in particular,
consists in understanding the accidental global symmetries restored in various corners of the parametric space and the
pseudo-Goldstone boson (PGB) nature of the corresponding states. Let us thus clasify one by one the most interesting
limits and provide the PGB counting in each case.

A. 45 only (ν = λ1 = λ2 = α = β = τ = 0)

When a2 = 0, i.e. when only trivial 45H invariants are considered, the scalar potential V0 has an enhanced global
symmetry in the 45 sector given by O(45). After the SSB due to the 45 VEV ω = ωR = −ωY the symmetry is broken
down to O(44) and we expect 44 GB in the scalar spectrum as it is shown explicitly in Appendix ??.

In this case, the gauge SO(10) symmetry is broken to SU(5)′ × U(1)X . Therefore 45-25=20 would-be GB (WGB)
are eaten by gauge fields and 44-20=24 pseudo-GB (PGB) remain in the scalar spectrum. A mass is generated by the
explicit breaking term a2.
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• The states (1,3,0) and (8,1,0) belong to this set of PGB 
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tunings to be imposed onto the scalar potential [17] so that all the symmetry breaking steps are performed
at the desired scales.

On the technical side one should identify all the Higgs multiplets needed by the breaking pattern under
consideration and keep them according to the gauge symmetry down to the scale of their VEVs. This
typically pulls down a large number of scalars in scenarios where 126H provides the B − L breakdown.

On the other hand, one must take into account that the role of 126H is twofold: in addition to triggering
the G1 breaking it plays a relevant role in the Yukawa sector (Eq. (1)) where it provides the necessary
breaking of the down quark - charged lepton mass degeneracy. For this to work one needs a reasonably
large admixture of the 126H component in the effective electroweak doublets. Since (2, 2, 1)10 can mix with
(2, 2, 15)126 only below the Pati-Salam breaking scale, both fields must be present at the Pati-Salam level
(otherwise the scalar doublet mass matrix does not provide large enough components of both these multiplets
in the light Higgs fields).

Note that the same argument applies also to the 2L1R4C intermediate stage when one must retain the
doublet component of 126H , namely (2, + 1

2 , 15)126, in order for it to eventually admix with (2, + 1
2 , 1)10 in

the light Higgs sector. On the other hand, at the 2L2R1X3c and 2L1R1X3c stages, the (minimal) survival of
only one combination of the φ10 and φ126 scalar doublets (see Table II) is compatible with the Yukawa sector
constraints because the degeneracy between the quark and lepton spectra has already been smeared-out by
the Pati-Salam breakdown.

In summary, potentially realistic renormalizable Yukawa textures in settings with well-separated SO(10)
and Pati-Salam breaking scales call for an additional fine tuning in the Higgs sector. In the scenarios with
126H , the 10H bidoublet (2, 2, 1)10, included in Refs [6–9], must be paired at the 2L2R4C scale with an extra
(2, 2, 15)126 scalar bidoublet (or (2, + 1

2 , 1)10 with (2, + 1
2 , 15)126 at the 2L1R4C stage). This can affect the

running of the gauge couplings in chains I, II, III, V, VI, VII, X, XI and XII.

For the sake of comparison with previous studies [6–9] we shall not include the φ126 multiplets in the first
part of the analysis. Rather, we shall comment on their relevance for gauge unification in Sect. IVC.

III. TWO-LOOP GAUGE RENORMALIZATION GROUP EQUATIONS

In this section we report, in order to fix a consistent notation, the two-loop renormalization group equations
(RGEs) for the gauge couplings. We consider a gauge group of the form U(1)1⊗ ...⊗U(1)N ⊗G1⊗ ...⊗GN ′ ,
where Gi are simple groups.

A. The non-abelian sector

Let us focus first on the non-abelian sector corresponding to G1 ⊗ ... ⊗ GN ′ and defer the full treatment
of the effects due to the extra U(1) factors to section III B. Defining t = log(µ/µ0) we write

dgp

dt
= gp βp (2)

where p = 1, ..., N ′ is the gauge group label. Neglecting for the time being the abelian components, the
β-functions for the G1 × ... × GN ′ gauge couplings read at two-loop level [18–21]:

βp =
g2

p

(4π)2

{
−

11

3
C2(Gp) +

4

3
κS2(Fp) +

1

3
ηS2(Sp) −

2κ

(4π)2
Y4(Fp)

+
g2

p

(4π)2

[
−

34

3
(C2(Gp))

2 +

(
4C2(Fp) +

20

3
C2(Gp)

)
κS2(Fp) +

(
4C2(Sp) +

2

3
C2(Gp)

)
ηS2(Sp)

]

+
g2

q

(4π)2
4
[
κC2(Fq)S2(Fp) + ηC2(Sq)S2(Sp)

]}

where κ = 1, 1
2 for Dirac and Weyl fermions respectively. Correspondingly, η = 1, 1

2 for complex and real
scalar fields. The sum over q $= p corresponding to contributions to βp from the other gauge sectors labelled
by q is understood. Given a fermion F or a scalar S field that transforms according to the representation
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C. A trivial 45-16 potential (a2 =λ2=β=τ =0)

When only trivial invariants of both 45 and 16 are considered ( moduli terms) the global symmetry of V0 is
O(45) ⊗ O(32). It is then broken spontaneously into O(44) ⊗ O(31) by the 45 and 16 VEVs yielding 44+31=75
GB in the scalar spectrum. The gauge SO(10) symmetry is at the same time broken down to the SM gauge group.
Therefore 75-33=42 PGB are left in the spectrum. Their masses should generally receive contributions from the
explicitly breaking terms a2, λ2, β and τ .

SO(10)
MG−−−−→

〈45H〉
3c 2L 2R 1B−L

MI−−−−→
〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−→

〈16H〉 or 〈126H〉
3c 2L 1Y (15)

SO(10)
MG−−−−→

〈45H〉
4C 2L 1R

MI−−−−→
〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−→

〈16H〉 or 〈126H〉
3c 2L 1Y (16)

Global: O(45) ⊗ O(32)
〈45H〉−−−−→
〈16H〉

O(44) ⊗ O(31) =⇒ 44 + 31 = 75 GB (17)

Local: SO(10)
〈45H〉−−−−→
〈16H〉

SM =⇒ 33 WGB (18)

75 − 33 = 42 PGB

D. A trivial 45-16 interaction (β = τ = 0)

Turning off just the β and τ -couplings still allows for independent global rotations of the Φ and χ Higgs fields. The
largest global symmetries are those determined by the a2 and λ2 terms in V0 are SO(10)45 and SO(10)16 respectively,
and they are spontaneously broken to global [SU(5)′ ⊗ U(1)] and SU(5) by the VEVs obeying ωR = −ωY and
χR %= 0 respectively. Hence, this setting gives rise to 20 + 21 = 41 GB. The gauged SO(10) is simultaneously broken
down to the SM gauge symmetry (spanned over the intersection of the algebras of the gauged SU(5)′ ⊗ U(1)X and
SU(5) symmetries) and thus 33 WGB are eaten by the gauge bosons. Therefore, 41-33=8 PGB remain in the scalar
spectrum. Thus, there are 8 states that receive contributions from the explicit breaking terms β and τ only.

All of these features can be tested against the explicit derivation of the scalar mass spectrum (see Appendix ??).

E. A tree-level accident

The masses of the states (1, 3, 0) and (8, 1, 0) in Eqs. (12)–(13) depend at the tree level only on the parameter a2.
While the τ term cannot obviously contribute to a tree level 45H mass term, one would generally expect a contri-

bution from the β interaction (proportional to χ2
R). Making the tensor structure explicit, one obtains

β

16
χ2

R (σij)16β(σkl)β16 φijφkl . (19)

Explicit calculation shows, as we already know, a vanishing contribution to the mass of the (1, 3, 0) and (8, 1, 0)
multiplets.

This result is actually more general and it is simply understood by observing that the scalar interaction in Eq. (19)
has the same form of the gauge boson mass from the covariant derivative, c.f. Eq. (C4).

As a consequence, no tree-level mass contribution from the β coupling can arise for the scalars carrying the quantum
numbers of the algebra of the preserved gauge group. This is verified explicitly from inspection of the scalar spectra
on the different vacua (see Sect. ??).

Of course, nothing prevents β and τ interactions from contributing to the masses of (1, 3, 0) and (8, 1, 0) at the
quantum level. For instance, we should expect a one-loop contribution proportional to β2(ω2

Y , ω2
R) when 16H states

are exchanged in the loop (independent on χR, that in realistic cases may be negligible on the unification scale).
At one loop we should also expect contributions from the τ trilinear term. It is relevant to observe that the τ induced

mass correction does not depend on the gauge symmetry breaking: it is an SO(10) symmetric renormalization.

8

C. Constraints on the potential parameters

The parameters (couplings and VEVs) of the scalar potential are constrained by the requirements of boundedness
and the absence of tachyonic states, enssuring that the vacuum is stable and the stationary points correspond to
physical minima.

Following the analysis in Appendix B the former implies

a1 > − 13
80a2 , λ1 > 0 . (24)

while the absence of tachyons in the physical spectrum yields

a2 < 0 , −2 < ωY /ωR < − 1
2 . (25)

This can be seen easily from the shape of the tree-level masses of the (8, 1, 0) and (1, 3, 0) SM sub-multiplets of 45H :

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (26)
M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (27)

M2(1, 3, 0) = 2a2(ωB−L − ωR)(ωB−L + 2ωR) (28)

M2(8, 1, 0) = 2a2(ωR − ωB−L)(ωR + 2ωB−L) (29)

which can not be simultaneously positive unless (25) is enforced. Let us also remark that in the τ = 0 limit
(corresponding to an extra Z2 symmetry Φ → −Φ) one recovers the results in [24], namely

a2 < 0 , −1 ≤ ωY /ωR ≤ − 2
3 and β > 0 . (30)

In either case one concludes [31] that the only vacuum configurations allowed are those in the close vicinity of the
flipped 5′ 1Z′ setting. Hence, the large hierarchy (of at least four orders of magnitude) between ωR and ωY , required
by gauge coupling unification (see chains VIIIb and XIIb in [36]) cannot be achieved.

This is the key point of the classical argument that the non-SUSY SO(10) GUTs with only the adjoint responsible
for the SO(10) breakdown can not support the phenomenologically favoured symmetry breaking chains. However, as
we shall see later in Sect. V, the qualitative features of the scalar spectrum can change significantly at the quantum
level and, in principle, a new room can open for a successfull implementation of the desired pattern of the intermediate
scales.

IV. UNDERSTANDING THE SCALAR SPECTRUM

In doing so, we shall strongly benefit from a detailed comprehension of the scalar spectrum which, in particular,
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This is the key point of the classical argument that the non-SUSY SO(10) GUTs with only the adjoint responsible
for the SO(10) breakdown can not support the phenomenologically favoured symmetry breaking chains. However, as
we shall see later in Sect. V, the qualitative features of the scalar spectrum can change significantly at the quantum
level and, in principle, a new room can open for a successfull implementation of the desired pattern of the intermediate
scales.

IV. UNDERSTANDING THE SCALAR SPECTRUM

In doing so, we shall strongly benefit from a detailed comprehension of the scalar spectrum which, in particular,
consists in understanding the accidental global symmetries restored in various corners of the parametric space and the
pseudo-Goldstone boson (PGB) nature of the corresponding states. Let us thus clasify one by one the most interesting
limits and provide the PGB counting in each case.

A. 45 only (ν = λ1 = λ2 = α = β = τ = 0)

When a2 = 0, i.e. when only trivial 45H invariants are considered, the scalar potential V0 has an enhanced global
symmetry in the 45 sector given by O(45). After the SSB due to the 45 VEV ω = ωR = −ωY the symmetry is broken
down to O(44) and we expect 44 GB in the scalar spectrum as it is shown explicitly in Appendix ??.

In this case, the gauge SO(10) symmetry is broken to SU(5)′ × U(1)X . Therefore 45-25=20 would-be GB (WGB)
are eaten by gauge fields and 44-20=24 pseudo-GB (PGB) remain in the scalar spectrum. A mass is generated by the
explicit breaking term a2.
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Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where
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2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 (11)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 (12)

V45H16H = α (16†H16H)Tr 452H (13)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 + a2 Tr 45

4
H (14)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 + λ2 (16H Γ 16H)(16†H Γ 16†H) (15)

V45H16H = α (16†H16H)Tr 452H + β 16†H452H16H + τ 16†H45H16H (16)

The mass terms as well as the coupling constants above are real by hermiticity. Note also that linear and cubic
Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.

4

2×
(
16H ⊕ 16H

)
⊕ 45H (28)

α− #= 0 and/or Φν #= Φe (29)

r1,2 α1,2 (30)

ρ τ (31)

Ω (32)

M2
E/MP > Mf (33)

16H16H54H or 16H16H54H (34)

tanβ ∼ 1 (35)

45H ⊕ 16H ⊕ 16H (36)

α1 = α2 and φν1 − φν2 = φe1 − φe2 (37)

α1 #= α2 and/or φν1 − φν2 #= φe1 − φe2 (38)

16⊕ 16

78 ≡ 450 ⊕ 16−3 ⊕ 16+3 ⊕ 10 (39)

27 ≡ 16+1 ⊕ 10−2 ⊕ 1+4 (40)

tanβ ∼ 1 (41)

a2 = λ2 = β = τ = 0 (42)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least

Global symmetries of the potential in the limit 
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FIG. 1. Typical one-loop diagrams that induce for 〈χ〉 = 0, O(τ/4π,β 〈Φ〉 /4π, g2 〈Φ〉 /4π) renormalization to the mass of 45H
fields at the unification scale. They are relevant for the pseudo GB states, whose tree level mass is proportional to a2.
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results reported in Appendix ??. In particular at µ = MG we obtain
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16H

16H

τ

45H

τ

45H

16H

16H

β

45H

β

45H

〈45H〉 〈45H〉

45H

g2

45H

g2

〈45H〉 〈45H〉

ONE LOOP PGB MASSES: RESULTS

14

χ

χ
τ

φ
τ

φ

χ

χ
β

φ
β

φ

〈φ〉 〈φ〉

φ
g2

φ
g2

〈φ〉 〈φ〉

FIG. 1. Typical one-loop diagrams that induce for 〈χ〉 = 0, O(τ/4π,β 〈Φ〉 /4π, g2 〈Φ〉 /4π) renormalization to the mass of 45H
fields at the unification scale. They are relevant for the pseudo GB states, whose tree level mass is proportional to a2.

∆M2(1, 3, 0) =
1

4π2

[
τ2 + β2(2ω2

R − ωRωY + 2ω2
Y ) + g4

(
16ω2

R + ωY ωR + 19ω2
Y

)]
+ Log’s (µ) (69)

∆M2(8, 1, 0) =
1

4π2

[
τ2 + β2(ω2

R − ωRωY + 3ω2
Y ) + g4

(
13ω2

R + ωY ωR + 22ω2
Y

)]
+ Log’s (µ) (70)

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) (71)

+
1

4π2

[
τ2 + β2(2ω2

R − ωRωY + 2ω2
Y ) + g4

(
16ω2

R + ωY ωR + 19ω2
Y

)]
+ Log’s (µ) (72)

(73)

M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) (74)

+
1

4π2

[
τ2 + β2(ω2

R − ωRωY + 3ω2
Y ) + g4

(
13ω2

R + ωY ωR + 22ω2
Y

)]
+ Log’s (µ) (75)

M2(1, 3, 0) = 2a2(ωB−L − ωR)(ωB−L + 2ωR) (76)

+
1

4π2

[
τ2 + β2(2ω2

R − ωRωB−L + 2ω2
B−L) + g4

(
16ω2

R + ωB−LωR + 19ω2
B−L

)]
+ Log’s (µ) (77)

(78)

M2(8, 1, 0) = 2a2(ωR − ωB−L)(ωR + 2ωB−L) (79)

+
1

4π2

[
τ2 + β2(ω2

R − ωRωB−L + 3ω2
B−L) + g4

(
13ω2

R + ωB−LωR + 22ω2
B−L

)]
+ Log’s (µ) (80)

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (81)
M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (82)

where the subleading (and gauge dependent) logarithmic terms are neglected. On the vacua of interest we find the
results reported in Appendix ??. In particular at µ = MG we obtain

• ω = ωR = −ωY (flipped 5′ 1Z′)

M2(24, 0) = −4a2ω
2 +

τ2 + (5β2 + 34g4)ω2

4π2
(83)

14

χ

χ
τ

φ
τ

φ

χ

χ
β

φ
β

φ

〈φ〉 〈φ〉

φ
g2

φ
g2

〈φ〉 〈φ〉

FIG. 1. Typical one-loop diagrams that induce for 〈χ〉 = 0, O(τ/4π,β 〈Φ〉 /4π, g2 〈Φ〉 /4π) renormalization to the mass of 45H
fields at the unification scale. They are relevant for the pseudo GB states, whose tree level mass is proportional to a2.

∆M2(1, 3, 0) =
1

4π2

[
τ2 + β2(2ω2

R − ωRωY + 2ω2
Y ) + g4

(
16ω2

R + ωY ωR + 19ω2
Y

)]
+ Log’s (µ) (69)

∆M2(8, 1, 0) =
1

4π2

[
τ2 + β2(ω2

R − ωRωY + 3ω2
Y ) + g4

(
13ω2

R + ωY ωR + 22ω2
Y

)]
+ Log’s (µ) (70)

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) (71)

+
1

4π2

[
τ2 + β2(2ω2

R − ωRωY + 2ω2
Y ) + g4

(
16ω2

R + ωY ωR + 19ω2
Y

)]
+ Log’s (µ) (72)

(73)

M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) (74)

+
1

4π2

[
τ2 + β2(ω2

R − ωRωY + 3ω2
Y ) + g4

(
13ω2

R + ωY ωR + 22ω2
Y

)]
+ Log’s (µ) (75)

M2(1, 3, 0) = 2a2(ωB−L − ωR)(ωB−L + 2ωR) (76)

+
1

4π2

[
τ2 + β2(2ω2

R − ωRωB−L + 2ω2
B−L) + g4

(
16ω2

R + ωB−LωR + 19ω2
B−L

)]
+ Log’s (µ) (77)

(78)

M2(8, 1, 0) = 2a2(ωR − ωB−L)(ωR + 2ωB−L) (79)

+
1

4π2

[
τ2 + β2(ω2

R − ωRωB−L + 3ω2
B−L) + g4

(
13ω2

R + ωB−LωR + 22ω2
B−L

)]
+ Log’s (µ) (80)

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (81)
M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (82)

where the subleading (and gauge dependent) logarithmic terms are neglected. On the vacua of interest we find the
results reported in Appendix ??. In particular at µ = MG we obtain

• ω = ωR = −ωY (flipped 5′ 1Z′)

M2(24, 0) = −4a2ω
2 +

τ2 + (5β2 + 34g4)ω2

4π2
(83)

Luca Di Luzio (SISSA, Trieste)   -   Unification without supersymmetry: where do we stand ?   -   Planck 2011   -   6/8

Explicit computation of the one-loop PGB masses with Effective-Potential methods

• For |a2|<10-2 the phenomenological vacua open up at the quantum level !

• Inherent to all the non-SUSY SO(10) models with a dominant <45H>   



The 45H ⊕16H ⊕10H scenario fails when addressing the neutrino mass scale

WHAT ABOUT NEUTRINOS ?
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The 45H ⊕16H ⊕10H scenario fails when addressing the neutrino mass scale

[Witten (1980); Bajc, Senjanovic (2005)]

• Radiative seesaw

4

and the most common choice is a 10H dimensional multiplet with the Yukawa interaction

schematically

LY = 16F Y1010H16F . (1)

As is well known, righthanded neutrino masses, being SU(5) singlets, can only arise from

a five index antisymmetric 126 representation, missing in this approach. In the language of

the SU(2)L×SU(2)R×SU(4)C Pati-Salam symmetry (hereafter denoted as PS) one needs a

nonzero vev in the (1, 3, 10) direction. Thus it must be generated radiatively and it can only

appear at the two loop level shown in Fig. 1.

16F 16F 16F 16F

10H 45V 45V

〈16H〉

16H

〈16H〉

FIG. 1: A contribution to the radiatively generated fermion mass.

One obtains [2]

MνR
≈

(

α

π

)2

Y10
M2

R

MGUT

. (2)

Notice that we write M2
R/MGUT instead of MGUT in [2] in order to be as general as

possible. Of course this was a nonsupersymmetric theory. Today we know that this must

fail as mentioned in the introduction. The failure of gauge coupling unification in the

standard model forces the SU(2)R breaking scale MR responsible for righthanded neutrino

mass to lie much below MGUT : MR ≈ 1013 GeV. This in turn leads to too small righthanded

2

I. INTRODUCTION

It has been shown recently [1, 2] that quantum effects solve the long-standing issue [3] of the incompatibility between
the dynamics of a set of Higgs sectors in the renormalizable non-supersymmetric SO(10) grand unified theory (GUT)
and the gauge unification constraints. In particular, such a minimal grand unified scenarios not only support viable
SO(10) breaking patterns passing through intermediate 421 or 3221 gauge symmetries (or their 3211 intersection),
but it also exhibits all the needed ingredients for a potentially realistic description of the Standard Model (SM) flavor
structure.

On the other hand, the simplest scenario featuring the Higgs scalars in 10H ⊕ 16H ⊕ 45H of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric models, the B − L breaking scale MB−L turns out to be
generally smaller than the GUT scale MG, by a few orders of magnitude. Thus, the scale of the right-handed (RH)
neutrino masses MN ∼ M2

B−L/MP emerging first at the d = 5 level from an operator of the form 162F (16
∗
H)2/MP

(with MP typically identified with the Planck scale) undershoots by orders of magnitude the range of about 1012 to
1014 GeV naturally suggested by the seesaw implementation.

MN ∼
(α
π

)
Y10

M2
B−L

MG
∼

M2
B−L

MP
$ MB−L ⊂ 162F (16

∗
H)2/MP (1)

MN ∼
(α
π

)
Y10

M2
B−L

MG
(2)

MN ∼ YP
M2

B−L

MP
(3)

10H 16H 45H 45V (4)

Y10
√
α (5)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG $ MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.
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This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126
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MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.
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operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG $ MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.
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The 45H ⊕16H ⊕10H scenario fails when addressing the neutrino mass scale

[Witten (1980); Bajc, Senjanovic (2005)]

• Radiative seesaw

4

and the most common choice is a 10H dimensional multiplet with the Yukawa interaction

schematically

LY = 16F Y1010H16F . (1)

As is well known, righthanded neutrino masses, being SU(5) singlets, can only arise from

a five index antisymmetric 126 representation, missing in this approach. In the language of

the SU(2)L×SU(2)R×SU(4)C Pati-Salam symmetry (hereafter denoted as PS) one needs a

nonzero vev in the (1, 3, 10) direction. Thus it must be generated radiatively and it can only

appear at the two loop level shown in Fig. 1.

16F 16F 16F 16F

10H 45V 45V

〈16H〉

16H

〈16H〉

FIG. 1: A contribution to the radiatively generated fermion mass.

One obtains [2]
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α

π
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Y10
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MGUT

. (2)

Notice that we write M2
R/MGUT instead of MGUT in [2] in order to be as general as

possible. Of course this was a nonsupersymmetric theory. Today we know that this must

fail as mentioned in the introduction. The failure of gauge coupling unification in the

standard model forces the SU(2)R breaking scale MR responsible for righthanded neutrino

mass to lie much below MGUT : MR ≈ 1013 GeV. This in turn leads to too small righthanded
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This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG $ MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.
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H ⊃ MN ∼ 〈126∗H〉 ∼ MB−L (11)

162F 16
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H/MP (12)

Without SUSY it is natural to consider a 126H in place of 16H 
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I. INTRODUCTION

It has been shown recently [1, 2] that quantum effects solve the long-standing issue [3] of the incompatibility between
the dynamics of a set of Higgs sectors in the renormalizable non-supersymmetric SO(10) grand unified theory (GUT)
and the gauge unification constraints. In particular, such a minimal grand unified scenarios not only support viable
SO(10) breaking patterns passing through intermediate 421 or 3221 gauge symmetries (or their 3211 intersection),
but it also exhibits all the needed ingredients for a potentially realistic description of the Standard Model (SM) flavor
structure.

On the other hand, the simplest scenario featuring the Higgs scalars in 10H ⊕ 16H ⊕ 45H of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric models, the B − L breaking scale MB−L turns out to be
generally smaller than the GUT scale MG, by a few orders of magnitude. Thus, the scale of the right-handed (RH)
neutrino masses MN ∼ M2

B−L/MP emerging first at the d = 5 level from an operator of the form 162F (16
∗
H)2/MP

(with MP typically identified with the Planck scale) undershoots by orders of magnitude the range of about 1012 to
1014 GeV naturally suggested by the seesaw implementation.

MB−L $ MG =⇒ MR $ 1014 GeV =⇒ mν ∼ m2
t/MR & 1 eV (1)

MB−L $ MG ⇒ mν ∼ v2/MR (2)

MG & MI > MB−L (3)

〈78〉 ∝
〈
27 27

〉
(4)

MR ∼
(α
π

)
Y10

M2
B−L

MG
∼

M2
B−L

MP
$ MB−L ⊂ 162F (16

∗
H)2/MP (5)

MR ∼
(α
π

)
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B−L

MG
⊂ (6)

MR ∼ YP
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MP
⊂ YP

MP
16F 16F 16

∗
H16∗H (7)

10H 16H 45H 45V 126H 45H 54H 210H 〈16H〉 = 0 (8)

Y10
√
α (9)

〈16H〉 ∼ MB−L $ MG (10)

MR ∼ Y126 MB−L ⊂ Y126 16F 16F 126
∗
H (11)

16F 16F 126
∗
H ⊃ MN ∼ 〈126∗H〉 ∼ MB−L (12)
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• RH neutrino mass scale much better :

• Renormalizable Yukawa sector potentially predictive
[Babu, Mohapatra (1993); Bajc, Melfo, Senjanovic, Vissani (2005); Joshipura, Patel (2011)]
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- Compute the scalar spectrum (work in progress...)

- Running including threshold effects

- Fit of the SM flavour structure (including neutrinos)  

• In order to say something sensible: 

- Compute the proton decay branching ratios ...

• If compatible

• A model featuring 45H ⊕126H ⊕10H  in the Higgs sector has all the ingredients 
to be a viable minimal non-SUSY SO(10) candidate



BACKUP SLIDES



• U(1) mixing makes MB-L essentially free (upper bound given by MI)
• Two-loop effects tend to raise MI and lower MG

• Sharp disagreement for chain XIIa: MI is raised by 5 orders of magnitude ! 

[Deshpande, Keith, Pal (1993)] [Bertolini, DL, Malinsky (2009)]
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FIG. 1: The values of nU (red/upper branches) and n2 (blue/lower branches) are shown as functions of n1 for the pure gauge
running in the 126H case. The bold black line bounds the region n1 ≤ n2. From chains Ia to VIIa the short-dashed lines
represent the result of one-loop running while the solid ones correspond to the two-loop solutions. For chains VIIIa to XIIa
the short-dashed lines represent the one-loop results without the U(1)X ⊗ U(1)R mixing, the long-dashed lines account for the
complete one-loop results, while the solid lines represent the two-loop solutions. The scalar content at each stage corresponds
to that considered in Ref. [9], namely to that reported in Table II without the φ126 multiplets. For chains I to VII the two-step
SO(10) breaking consistent with minimal fine tuning is recovered in the n2 → nU limit. No solution is found for chain Xa.
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E. The one-loop vacuum structure

1. Conditions for the existence of the new vacua

We now examine the constraints on the parameters a2, β, τ and g which are needed at the scale µ = MG in order
to allow for the existence of the non-SU(5) vacua. From Eqs. (41)–(44) we find (a2 < 0)

• ωR = 0 and ωY "= 0 (3c 2L 2R 1X)

−8π2a2 <
τ2

ω2
Y

+ 2β2 + 19g4 , (59)
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FIG. 2: Same as in Fig. 1 for the 16H case.

When considering the gauge coupling renormaliza-
tion in the 2L1R1X3c stage, no effect at one-loop
appears in the non-abelian β-functions due to the
abelian gauge fields. On the other hand, the Higgs
fields surviving at the 2L1R1X3c stage, responsible
for the breaking to 1Y 2L3c, are (by construction) SM
singlets. Since the SM one-loop β-functions are not

affected by their presence, the solution found for n2,
nU and αU in the n1 = n2 case holds for n1 < n2 as
well. Only by performing correctly the mixed 1R1X

gauge running and the consistent matching with 1Y

one recovers the expected n1 flatness of the GUT
solution.

In this respect, it is interesting to notice that the
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MG/4π (45)

MI (46)

MZ (47)

E. The one-loop vacuum structure

1. Conditions for the existence of the new vacua

We now examine the constraints on the parameters a2, β, τ and g which are needed at the scale µ = MG in order
to allow for the existence of the non-SU(5) vacua. From Eqs. (39)–(42) we find (a2 < 0)

• ωR = 0 and ωY != 0 (3c 2L 2R 1X)

−8π2a2 <
τ2

ω2
Y

+ 2β2 + 19g4 , (48)

• ωR != 0 and ωY = 0 (4C 2L 1R)

−8π2a2 <
τ2

ω2
R

+ β2 + 13g4 . (49)

Considering for naturalness τ ∼ ωY,R Eqs. (48)–(49) imply |a2| < 10−2. We consider this constraint within the
natural range for dimensionless couplings. All other PGB states whose mass is proportional to −a2 receive positive
loop corrections of the same order, while quantum corrections are numerically irrelevant for all of the states with
GUT scale mass. On the same grounds we may neglect the multiplicative a2 loop corrections induced by 45H states
on the PGB masses.

2. Absolute minimum

It remains to show that the non SU(5) solution may be absolute minima of the potential. Ti this end it is necessary
to compute the one-loop stationary conditions Neglecting at the GUT scale the logarithmic corrections, we obtain for
the three relevant vacuum solutions:

• ω = ωR = −ωY (5′ 1Z′)

V (ω, χR = 0) = −
3ν4

16π2
+

(

5αν2

π2
+

5βν2

16π2
−

5τ2

16π2

)

ω2

+

(

−100a1 −
65a2

4
+

200a2
1

π2
+

785a1a2

12π2
+

1555a2
2

192π2
+

100α2

π2
+

25αβ

2π2
+

65β2

64π2
−

5g4

2π2

)

ω4 . (50)

• ωR = 0 and ωY != 0 (3c 2L 2R 1X)

V (ωY , χR = 0) = −
3ν4

16π2
+

(

3αν2

π2
+

3βν2

16π2
−

3τ2

16π2

)

ω2
Y

+

(

−36a1 −
21a2

4
+

72a2
1

π2
+

33a1a2

2π2
+

3a2
2

π2
+

36α2

π2
+

9αβ

2π2
+

21β2

64π2
−

15g4

16π2

)

ω4
Y . (51)
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1. Conditions for the existence of the new vacua

We now examine the constraints on the parameters a2, β, τ and g which are needed at the scale µ = MG in order
to allow for the existence of the non-SU(5) vacua. From Eqs. (39)–(42) we find (a2 < 0)

• ωR = 0 and ωY != 0 (3c 2L 2R 1X)

−8π2a2 <
τ2

ω2
Y

+ 2β2 + 19g4 , (53)

• ωR != 0 and ωY = 0 (4C 2L 1R)

−8π2a2 <
τ2

ω2
R

+ β2 + 13g4 . (54)

Considering for naturalness τ ∼ ωY,R Eqs. (50)–(51) imply |a2| < 10−2. We consider this constraint within the
natural range for dimensionless couplings. All other PGB states whose mass is proportional to −a2 receive positive
loop corrections of the same order, while quantum corrections are numerically irrelevant for all of the states with
GUT scale mass. On the same grounds we may neglect the multiplicative a2 loop corrections induced by 45H states
on the PGB masses.
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4C 2L 2R 4C 2L 1R 3c 2L 2R 1X 3c 2L 1R 1X 3c 2L 1Y 5 5′ 1Z′ 1Y ′

(4, 2, 1) (4, 2, 0)
`

3, 2, 1, + 1

6

´ `

3, 2, 0, + 1

6

´ `

3, 2, + 1

6

´

10 (10, +1) + 1

6
`

1, 2, 1,− 1

2

´ `

1, 2, 0,− 1

2

´ `

1, 2,− 1

2

´

5
`

5,−3
´

− 1

2
`

4, 1, 2
´ `

4, 1, + 1

2

´ `

3, 1, 2,− 1

6

´ `

3, 1, + 1

2
,− 1

6

´ `

3, 1, + 1

3

´

5 (10, +1) − 2

3
`

4, 1,− 1

2

´ `

3, 1,− 1

2
,− 1

6

´ `

3, 1,− 2

3

´

10
`

5,−3
´

+ 1

3
`

1, 1, 2, + 1

2

´ `

1, 1, + 1

2
, + 1

2

´

(1, 1, +1) 10 (1, +5) 0
`

1, 1,− 1

2
, + 1

2

´

(1, 1, 0) 1 (10, +1) +1

TABLE I. Decomposition of the spinorial representation 16 with respect to the various SO(10) subgroups. The definitions and normal-
ization of the abelian charges are given in the text.

4C 2L 2R 4C 2L 1R 3c 2L 2R 1X 3c 2L 1R 1X 3c 2L 1Y 5 5′ 1Z′ 1Y ′

(1, 1, 3) (1, 1, +1) (1, 1, 3, 0) (1, 1, +1, 0) (1, 1, +1) 10 (10,−4) +1

(1, 1, 0) (1, 1, 0, 0) (1, 1, 0) 1 (1, 0) 0

(1, 1,−1) (1, 1,−1, 0) (1, 1,−1) 10
`

10, +4
´

−1

(1, 3, 1) (1, 3, 0) (1, 3, 1, 0) (1, 3, 0, 0) (1, 3, 0) 24 (24, 0) 0

(6, 2, 2)
`

6, 2, + 1

2

´ `

3, 2, 2,− 1

3

´ `

3, 2, + 1

2
,− 1

3

´ `

3, 2, 1

6

´

10 (24, 0) − 5

6
`

6, 2,− 1

2

´ `

3, 2,− 1

2
,− 1

3

´ `

3, 2,− 5

6

´

24 (10,−4) + 1

6
`

3, 2, 2, + 1

3

´ `

3, 2, + 1

2
, + 1

3

´ `

3, 2, + 5

6

´

24
`

10, +4
´

− 1

6
`

3, 2,− 1

2
, + 1

3

´ `

3, 2,− 1

6

´

10 (24, 0) + 5

6

(15, 1, 1) (15, 1, 0) (1, 1, 1, 0) (1, 1, 0, 0) (1, 1, 0) 24 (24, 0) 0
`

3, 1, 1, + 2

3

´ `

3, 1, 0, + 2

3

´ `

3, 1, + 2

3

´

10
`

10, +4
´

+ 2

3
`

3, 1, 1,− 2

3

´ `

3, 1, 0,− 2

3

´ `

3, 1,− 2

3

´

10 (10,−4) − 2

3

(8, 1, 1, 0) (8, 1, 0, 0) (8, 1, 0) 24 (24, 0) 0

TABLE II. Same as in Table I for the SO(10) adjoint (45) representation.

2. The L-R chains

In this language, the potentially viable breaking chains fulfilling the basic gauge unification constraints advocated
in the Introduction correspond to the settings with:

Chain VIII ωY ! ωR > χR : SO(10) → 3c2L2R1B−L → 3c2L1R1B−L → 3c2L1Y

Chain XII ωR ! ωY > χR : SO(10) → 4C2L1R → 3c2L1R1B−L → 3c2L1Y

As remarked in [36], the cases ωY,R ∼ χR lead to effective two-step SO(10) breaking scenarios with a non-minimal
set of surviving scalars at the G2 stage. On the other hand, a truly two-step setup can be recovered (with the minimal
fine tuning) by considering the case ωR or ωY exactly vanish. It is remarkable that in all cases GUT thresholds effects
related to the results of the present analysis improve the unification pattern [36].

3. Standard SU(5) versus flipped SU(5)

There are in general two distinct SM-compatible embeddings of SU(5) (rank=4) into SO(10) (rank=5) [26, 27].
They differ in the SU(5) Cartan algebra and therefore in the U(1)Z cofactor.

In the “standard” embedding, the weak hypercharge operator Y = T (3)
R +TX belongs to the SU(5) algebra and the

orthogonal Cartan generator Z (obeying [Ti, Z] = 0 for all Ti ∈ SU(5)) is given by Z = −4T (3)
R + 6TX .

In the “flipped” SU(5)′ scenario, the assignment of the right-handed quarks and leptons into the SU(5)′ multiplets

is turned over so that the “flipped” hypercharge generator reads Y ′ = −T (3)
R + TX and, accordingly, the additional

U(1)Z′ generator reads Z ′ = 4T (3)
R + 6TX (such that [Ti, Z ′] = 0 for all Ti ∈ SU(5)′). Weak hypercharge is then given

by Y = (Z ′ − Y ′)/5. Tables. I–II show the standard and flipped decomposition of the spinorial and adjoint SO(10)
representations.
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to allow for the existence of the non-SU(5) vacua. From Eqs. (41)–(44) we find (a2 < 0)
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4

Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where

V0 = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)
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I. INTRODUCTION

It has been shown recently [1, 2] that quantum effects solve the long-standing issue [3] of the incompatibility between
the dynamics of a set of Higgs sectors in the renormalizable non-supersymmetric SO(10) grand unified theory (GUT)
and the gauge unification constraints. In particular, such a minimal grand unified scenarios not only support viable
SO(10) breaking patterns passing through intermediate 421 or 3221 gauge symmetries (or their 3211 intersection),
but it also exhibits all the needed ingredients for a potentially realistic description of the Standard Model (SM) flavor
structure.

On the other hand, the simplest scenario featuring the Higgs scalars in 10H ⊕ 16H ⊕ 45H of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric models, the B − L breaking scale MB−L turns out to be
generally smaller than the GUT scale MG, by a few orders of magnitude. Thus, the scale of the right-handed (RH)
neutrino masses MN ∼ M2

B−L/MP emerging first at the d = 5 level from an operator of the form 162F (16
∗
H)2/MP

(with MP typically identified with the Planck scale) undershoots by orders of magnitude the range of about 1012 to
1014 GeV naturally suggested by the seesaw implementation.

16F (Y1010H + Y126126
∗
H) 16F (1)

Mu = 〈1, 2, 2〉u10 Y10 + 〈15, 2, 2〉u126 Y126

Md = 〈1, 2, 2〉d10 Y10 + 〈15, 2, 2〉d126 Y126

Me = 〈1, 2, 2〉d10 Y10 − 3 〈15, 2, 2〉d126 Y126

MD = 〈1, 2, 2〉u10 Y10 − 3 〈15, 2, 2〉u126 Y126

MR = 〈10, 1, 3〉Y126

ML =
〈
10, 3, 1

〉
Y126 (2)

MB−L & MG =⇒ MR & 1014 GeV =⇒ mν ∼ m2
t/MR ( 1 eV (3)

MB−L & MG ⇒ mν ∼ v2/MR (4)

MG ( MI > MB−L (5)

〈78〉 ∝
〈
27 27

〉
(6)

MR ∼
(α
π

)
Y10

M2
B−L

MG
∼

M2
B−L

MP
& MB−L ⊂ 162F (16

∗
H)2/MP (7)

MR ∼
(α
π

)
Y10

M2
B−L

MG
⊂ (8)

MR ∼ YP
M2

B−L

MP
⊂ YP

MP
16F 16F 16

∗
H16∗H (9)
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Introduction: The group SO(10) is a favourite candidate for constructing grand unified
theories (GUTs) [1]. The special interest in such theories also stems from the fact that they
allow for type I [2] and type II [3] seesaw mechanisms (see also [4]) for the light neutrino
masses. Confining oneself to renormalizable SO(10) GUTs, the scalar representations
coupling to the chiral fermion fields, which are all assembled for each family in the 16-
dimensional irreducible representation (irrep), are determined by the relation [5, 6]

16 ⊗ 16 = (10 ⊕ 126)S ⊕ 120AS, (1)

where the subscripts “S” and “AS” denote, respectively, the symmetric and antisymmetric
parts of the tensor product. The so-called “minimal SUSY SO(10) GUT” (MSGUT) [7]
makes use of one 10 and one 126 scalar irrep for the Yukawa couplings, to account
for all fermion masses and mixings [8]. The MSGUT contains, in addition, one 210

and one 126 scalar irrep [7]. This model has built-in the gauge-coupling unification of
the minimal SUSY extension of the Standard Model (MSSM). Detailed studies of this
minimal theory have been performed [9, 10, 11, 12, 13, 14, 15, 16]; in [9, 14, 15] small
effects of the 120-plet were considered in addition. It turned out that the MSGUT works
surprisingly well in the fermion sector, provided one neglects constraints on the overall
scale of the light neutrino masses. This, however, proved to be crucial, since the natural
order of the neutrino masses in GUTs is too low, namely v2/MGUT ∼ 1.5× 10−3 eV, with
v ∼ 174 GeV and the GUT scale MGUT ∼ 2 × 1016 GeV. Thorough studies of the heavy
scalar states [17, 18, 19, 20, 21, 22] have been used to show that this MSGUT is too
constrained [23, 24] and does not allow to enhance the neutrino mass scale to a realistic
one [25, 26], compatible with the results of the neutrino oscillation experiments (for a
review see, e.g., [27]). One aspect of this problem is that a seesaw scale significantly lower
than the GUT scale spoils the gauge coupling unification of the MSSM.

An obvious attempt to loosen the corset of the minimal theory is to add the 120-plet
of scalars. A study in that direction has been done in [28]. Earlier works considering a
prominent 120-plet contribution to the fermion mass matrices are found in [29, 30, 31, 32].
We note that 10 ⊕ 120 alone does not give a good fit in the charged fermion sector [33].
Thus the 126 scalar irrep is not only needed in the neutrino sector but also for the charged
fermion mass matrices. In that case, the mass matrices of the charged fermions and the
neutrino Dirac-mass matrix are given, respectively, by

Md = kd H + κd G + vd F, (2)

Mu = ku H + κu G + vu F, (3)

M! = kd H + κ! G − 3vd F, (4)

MD = ku H + κD G − 3vu F. (5)

The Yukawa coupling matrices H , G, F belong to the scalar irreps 10, 120, 126, respec-
tively. The coefficients kd, κd, κ!, vd denote the vacuum expectation values (VEVs) of
the Higgs doublet components in the respective SO(10) scalar irreps which contribute to
the MSSM Higgs doublet Hd, the rest of the coefficients refers to Hu. The light neutrino
mass matrix is obtained as

Mν = ML − MDM−1
R MT

D with ML = wL F, MR = wR F, (6)

2

4

tunings to be imposed onto the scalar potential [17] so that all the symmetry breaking steps are performed
at the desired scales.

On the technical side one should identify all the Higgs multiplets needed by the breaking pattern under
consideration and keep them according to the gauge symmetry down to the scale of their VEVs. This
typically pulls down a large number of scalars in scenarios where 126H provides the B − L breakdown.

On the other hand, one must take into account that the role of 126H is twofold: in addition to triggering
the G1 breaking it plays a relevant role in the Yukawa sector (Eq. (1)) where it provides the necessary
breaking of the down quark - charged lepton mass degeneracy. For this to work one needs a reasonably
large admixture of the 126H component in the effective electroweak doublets. Since (2, 2, 1)10 can mix with
(2, 2, 15)126 only below the Pati-Salam breaking scale, both fields must be present at the Pati-Salam level
(otherwise the scalar doublet mass matrix does not provide large enough components of both these multiplets
in the light Higgs fields).

Note that the same argument applies also to the 2L1R4C intermediate stage when one must retain the
doublet component of 126H , namely (2, +

1
2 , 15)126, in order for it to eventually admix with (2, +

1
2 , 1)10 in

the light Higgs sector. On the other hand, at the 2L2R1X3c and 2L1R1X3c stages, the (minimal) survival of
only one combination of the φ10 and φ126 scalar doublets (see Table II) is compatible with the Yukawa sector
constraints because the degeneracy between the quark and lepton spectra has already been smeared-out by
the Pati-Salam breakdown.

In summary, potentially realistic renormalizable Yukawa textures in settings with well-separated SO(10)
and Pati-Salam breaking scales call for an additional fine tuning in the Higgs sector. In the scenarios with
126H , the 10H bidoublet (2, 2, 1)10, included in Refs [6–9], must be paired at the 2L2R4C scale with an extra
(2, 2, 15)126 scalar bidoublet (or (2, +

1
2 , 1)10 with (2, +

1
2 , 15)126 at the 2L1R4C stage). This can affect the

running of the gauge couplings in chains I, II, III, V, VI, VII, X, XI and XII.

For the sake of comparison with previous studies [6–9] we shall not include the φ126 multiplets in the first
part of the analysis. Rather, we shall comment on their relevance for gauge unification in Sect. IVC.

III. TWO-LOOP GAUGE RENORMALIZATION GROUP EQUATIONS

In this section we report, in order to fix a consistent notation, the two-loop renormalization group equations
(RGEs) for the gauge couplings. We consider a gauge group of the form U(1)1⊗ ...⊗U(1)N ⊗G1⊗ ...⊗GN

′ ,
where Gi are simple groups.

A. The non-abelian sector

Let us focus first on the non-abelian sector corresponding to G1 ⊗ ... ⊗ GN
′ and defer the full treatment

of the effects due to the extra U(1) factors to section III B. Defining t = log(µ/µ0) we write

dgp

dt
= gp βp (2)

where p = 1, ..., N
′

is the gauge group label. Neglecting for the time being the abelian components, the
β-functions for the G1 × ... × GN

′ gauge couplings read at two-loop level [18–21]:

βp =
g
2
p

(4π)2

{
−

11

3
C2(Gp) +

4

3
κS2(Fp) +

1

3
ηS2(Sp) −

2κ

(4π)2 Y4(Fp)

+
g
2
p

(4π)2

[
−

34

3
(C2(Gp))

2
+

(
4C2(Fp) +

20

3
C2(Gp)

)
κS2(Fp) +

(
4C2(Sp) +

2

3
C2(Gp)

)
ηS2(Sp)

]

+
g2

q

(4π)2 4
[
κC2(Fq)S2(Fp) + ηC2(Sq)S2(Sp)

]}

where κ = 1,
1
2 for Dirac and Weyl fermions respectively. Correspondingly, η = 1,

1
2 for complex and real

scalar fields. The sum over q $= p corresponding to contributions to βp from the other gauge sectors labelled
by q is understood. Given a fermion F or a scalar S field that transforms according to the representation
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