UNIFICATION WITHOUT SUPERSYMMETRY: WHERE DO WE STAND?

Planck 2011 - Lisboa, 1st June 2011

Luca Di Luzio SISSA & INFN, Trieste

In collaboration with Stefano Bertolini (Trieste) and Michal Malinský (Valencia)

Based on Phys. Rev. D81 (2010) 035015 + Work in progress

THE GRAND UNIFICATION PROGRAM

Potential understanding of our low-energy world

- Charge quantization
- Rationale for the SM quantum numbers
- Handle on flavor and neutrino masses

Intrinsic predictivity of new phenomena

- Matter instability
- GUT Monopoles

THE GRAND UNIFICATION PROGRAM

Potential understanding of our low-energy world

- Charge quantization
- Rationale for the SM quantum numbers
- Handle on flavor and neutrino masses

Intrinsic predictivity of new phenomena

- Matter instability
- GUT Monopoles

Main hint:

• In many extensions of the SM, gauge couplings seem to unify in a narrow window still allowed by proton decay limits and a perturbative QFT description

THE GRAND UNIFICATION PROGRAM

Main hint:

 In many extensions of the SM, gauge couplings seem to unify in a narrow window still allowed by proton decay limits and a perturbative QFT description

STILL LOOKING FOR "THE" THEORY

After 37 years from Georgi and Glashow there is still no consensus on which is the the minimal theory

STILL LOOKING FOR "THE" THEORY

After 37 years from Georgi and Glashow there is still no consensus on which is the the minimal theory

- GG SU(5): fails on the unification side and for neutrino masses
 - Minimal extensions: add a $15_{\rm H}\,\text{or}$ a $24_{\rm F}$

[Dorsner, Fileviez Perez (2005), Bajc, Nemevsek, Senjanovic (2007)]

- Minimal SUSY SU(5): proton decay close to the experimental bound
 - But not ruled out [Bajc, Fileviez Perez, Senjanovic (2002), Emmanuel-Costa, Wiesenfeldt (2003), Martens, Mihaila, Salomon, Steinhauser (2010)]

STILL LOOKING FOR "THE" THEORY

After 37 years from Georgi and Glashow there is still no consensus on which is the the minimal theory

- GG SU(5): fails on the unification side and for neutrino masses
 - Minimal extensions: add a 15_H or a 24_F

[Dorsner, Fileviez Perez (2005), Bajc, Nemevsek, Senjanovic (2007)]

- Minimal SUSY SU(5): proton decay close to the experimental bound
 - But not ruled out [Bajc, Fileviez Perez, Senjanovic (2002), Emmanuel-Costa, Wiesenfeldt (2003), Martens, Mihaila, Salomon, Steinhauser (2010)]
- SO(10) GUTs usually score better than SU(5) models
 - More predictive in the Yukawa sector (SM matter + RH neutinos into 3 16_F's)
 - Natural relief from the tensions with the simplest SU(5) models

The unification ansatz predicts the existence of intermediate scales in the range 10^{10+14} GeV

$$(100 \text{ GeV})^2 / M_{\text{seesaw}} \gtrsim \sqrt{\Delta m_{\text{atm}}^2} \quad \Rightarrow \quad M_{\text{seesaw}} \lesssim 10^{14} \text{ GeV}$$

Luca Di Luzio (SISSA, Trieste) - Unification without supersymmetry: where do we stand? - Planck 2011 - 3/8

The unification ansatz predicts the existence of intermediate scales in the range 10^{10+14} GeV

$$(100 \text{ GeV})^2 / M_{\text{seesaw}} \gtrsim \sqrt{\Delta m_{\text{atm}}^2} \quad \Rightarrow \quad M_{\text{seesaw}} \lesssim 10^{14} \text{ GeV}$$

 $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \longleftarrow SU(3)_c \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \longleftarrow SO(10)$

The unification ansatz predicts the existence of intermediate scales in the range 10^{10+14} GeV

[Chang, Mohapatra, Gipson, Marshak, Parida (1985)]

The unification ansatz predicts the existence of intermediate scales in the range 10^{10+14} GeV

 $45_{H} \oplus 16_{H}$ minimally required to break SO(10) to the SM

$$SO(10) \xrightarrow{M_G} 3_c 2_L 2_R 1_{B-L} \xrightarrow{M_I} 3_c 2_L 1_R 1_{B-L} \xrightarrow{M_{B-L}} 3_c 2_L 1_R 1_{B-L} \xrightarrow{M_{B-L}} 3_c 2_L 1_Y$$

$$SO(10) \xrightarrow{M_G} 4_C 2_L 1_R \xrightarrow{M_I} 3_c 2_L 1_R 1_{B-L} \xrightarrow{M_{B-L}} 3_c 2_L 1_R 1_{B-L} \xrightarrow{M_{B-L}} 3_c 2_L 1_Y$$

where $M_G \gg M_I > M_{B-L}$ by unification constraints

The unification ansatz predicts the existence of intermediate scales in the range 10^{10+14} GeV

 $45_{H} \oplus 16_{H}$ minimally required to break SO(10) to the SM

$$SO(10) \xrightarrow{M_G} 3_c 2_L 2_R 1_{B-L} \xrightarrow{M_I} 3_c 2_L 1_R 1_{B-L} \xrightarrow{M_{B-L}} 3_c 2_L 1_R 1_{B-L} \xrightarrow{M_{B-L}} 3_c 2_L 1_Y$$

$$SO(10) \xrightarrow{M_G} 4_C 2_L 1_R \xrightarrow{M_I} 3_c 2_L 1_R 1_{B-L} \xrightarrow{M_{B-L}} 3_c 2_L 1_R 1_{B-L} \xrightarrow{M_{B-L}} 3_c 2_L 1_Y$$

where $M_G \gg M_I > M_{B-L}$ by unification constraints

NO GO !?

The dynamics of the Higgs sector does not support gauge coupling unification [Yasuè (1981), Anastaze, Derendinger, Buccella (1983), Babu, Ma (1985)]

Luca Di Luzio (SISSA, Trieste) - Unification without supersymmetry: where do we stand? - Planck 2011 - 3/8

THE LOCKING STATES

 $45_{H} \oplus 16_{H}$ potential analysed long ago [Buccella, Ruegg, Savoy (1980)]

$$V_0 = V_{45_H} + V_{16_H} + V_{45_H 16_H}$$

 $V_{45_H} = -\mu^2 \operatorname{Tr} 45_H^2 + a_1 \left(\operatorname{Tr} 45_H^2 \right)^2 + a_2 \operatorname{Tr} 45_H^4$ $V_{16_H} = -\nu^2 16_H^\dagger 16_H + \lambda_1 \left(16_H^\dagger 16_H \right)^2 + \lambda_2 \left(16_H \Gamma 16_H \right) \left(16_H^\dagger \Gamma 16_H^\dagger \right)$ $V_{45_H 16_H} = \alpha \left(16_H^\dagger 16_H \right) \operatorname{Tr} 45_H^2 + \beta 16_H^\dagger 45_H^2 16_H + \tau 16_H^\dagger 45_H 16_H$

THE LOCKING STATES

 $45_{H} \oplus 16_{H}$ potential analysed long ago [Buccella, Ruegg, Savoy (1980)]

$$V_0 = V_{45_H} + V_{16_H} + V_{45_H 16_H}$$

$$V_{45_H} = -\mu^2 \operatorname{Tr} 45_H^2 + a_1 \left(\operatorname{Tr} 45_H^2 \right)^2 + a_2 \operatorname{Tr} 45_H^4$$
$$V_{16_H} = -\nu^2 16_H^\dagger 16_H + \lambda_1 \left(16_H^\dagger 16_H \right)^2 + \lambda_2 \left(16_H \Gamma 16_H \right) \left(16_H^\dagger \Gamma 16_H^\dagger \right)$$
$$V_{45_H 16_H} = \alpha \left(16_H^\dagger 16_H \right) \operatorname{Tr} 45_H^2 + \beta 16_H^\dagger 45_H^2 16_H + \tau 16_H^\dagger 45_H 16_H$$

From the positivity of the scalar states (1,3,0) and (8,1,0) \subset 45_H

[Yasuè (1981), Anastaze, Derendinger, Buccella (1983), Babu, Ma (1985)]

$$M^{2}(1,3,0) = 2a_{2}(\omega_{B-L} - \omega_{R})(\omega_{B-L} + 2\omega_{R}) \implies a_{2} < 0, \quad -2 < \omega_{B-L}/\omega_{R} < -\frac{1}{2}$$
$$M^{2}(8,1,0) = 2a_{2}(\omega_{R} - \omega_{B-L})(\omega_{R} + 2\omega_{B-L})$$

Luca Di Luzio (SISSA, Trieste) - Unification without supersymmetry: where do we stand? - Planck 2011 - 4/8

THE LOCKING STATES

 $45_{H} \oplus 16_{H}$ potential analysed long ago [Buccella, Ruegg, Savoy (1980)]

$$V_0 = V_{45_H} + V_{16_H} + V_{45_H 16_H}$$

$$V_{45_H} = -\mu^2 \operatorname{Tr} 45_H^2 + a_1 (\operatorname{Tr} 45_H^2)^2 + a_2 \operatorname{Tr} 45_H^4$$
$$V_{16_H} = -\nu^2 16_H^\dagger 16_H + \lambda_1 (16_H^\dagger 16_H)^2 + \lambda_2 (16_H \Gamma 16_H) (16_H^\dagger \Gamma 16_H^\dagger)$$
$$V_{45_H 16_H} = \alpha (16_H^\dagger 16_H) \operatorname{Tr} 45_H^2 + \beta 16_H^\dagger 45_H^2 16_H + \tau 16_H^\dagger 45_H 16_H$$

From the positivity of the scalar states (1,3,0) and (8,1,0) \subset 45_H

[Yasuè (1981), Anastaze, Derendinger, Buccella (1983), Babu, Ma (1985)]

$$M^{2}(1,3,0) = 2a_{2}(\omega_{B-L} - \omega_{R})(\omega_{B-L} + 2\omega_{R}) \implies a_{2} < 0, \quad (-2 < \omega_{B-L}/\omega_{R} < -\frac{1}{2})$$
$$M^{2}(8,1,0) = 2a_{2}(\omega_{R} - \omega_{B-L})(\omega_{R} + 2\omega_{B-L})$$

Gauge unification requires an hierarchy between ω_{B-L} and ω_{R} !

Luca Di Luzio (SISSA, Trieste) - Unification without supersymmetry: where do we stand? - Planck 2011 - 4/8

Global symmetries of the potential in the limit $a_2 = \lambda_2 = \beta = \tau = 0$

Global symmetries of the potential in the limit $a_2 = \lambda_2 = \beta = \tau = 0$

$$O(45) \otimes O(32) \xrightarrow[\langle 16_H \rangle]{} O(44) \otimes O(31) \implies 44 + 31 = 75 \text{ GB}$$

$$SO(10) \xrightarrow[\langle 16_H \rangle]{} SM \implies 33 \text{ WGB}$$
$$\begin{cases} 75 - 33 = 42 \text{ PGB} \\ 33 \text{ WGB} \end{cases}$$

Global symmetries of the potential in the limit $a_2 = \lambda_2 = \beta = \tau = 0$

$$M^{2}(1,3,0) = 2a_{2}(\omega_{B-L} - \omega_{R})(\omega_{B-L} + 2\omega_{R})$$

$$M^{2}(8,1,0) = 2a_{2}(\omega_{R} - \omega_{B-L})(\omega_{R} + 2\omega_{B-L})$$

$$\begin{cases}
75 - 33 = 42 \text{ PGB} \\
75 - 33 = 42 \text{ PGB}
\end{cases}$$

- The states (1,3,0) and (8,1,0) belong to this set of PGB
- The absence of the terms λ_2 β and τ is just a tree level accident !

Global symmetries of the potential in the limit $a_2 = \lambda_2 = \beta = \tau = 0$

$$M^{2}(1,3,0) = 2a_{2}(\omega_{B-L} - \omega_{R})(\omega_{B-L} + 2\omega_{R})$$

$$M^{2}(8,1,0) = 2a_{2}(\omega_{R} - \omega_{B-L})(\omega_{R} + 2\omega_{B-L})$$

$$\begin{cases}
75 - 33 = 42 \text{ PGB} \\
75 - 33 = 42 \text{ PGB}
\end{cases}$$

- The states (1,3,0) and (8,1,0) belong to this set of PGB
- The absence of the terms λ_2 β and τ is just a tree level accident !
- Nothing prevents these couplings from entering at the quantum level !

ONE LOOP PGB MASSES: RESULTS

Explicit computation of the one-loop PGB masses with Effective-Potential methods

$$M^{2}(1,3,0) = 2a_{2}(\omega_{B-L} - \omega_{R})(\omega_{B-L} + 2\omega_{R}) + \frac{1}{4\pi^{2}} \left[\tau^{2} + \beta^{2}(2\omega_{R}^{2} - \omega_{R}\omega_{B-L} + 2\omega_{B-L}^{2}) + g^{4} \left(16\omega_{R}^{2} + \omega_{B-L}\omega_{R} + 19\omega_{B-L}^{2}\right)\right] + \text{Log's}(\mu)$$

$$M^{2}(8,1,0) = 2a_{2}(\omega_{R} - \omega_{B-L})(\omega_{R} + 2\omega_{B-L}) + \frac{1}{4\pi^{2}} \left[\tau^{2} + \beta^{2}(\omega_{R}^{2} - \omega_{R}\omega_{B-L} + 3\omega_{B-L}^{2}) + g^{4} \left(13\omega_{R}^{2} + \omega_{B-L}\omega_{R} + 22\omega_{B-L}^{2}\right)\right] + \text{Log's}(\mu)$$

ONE LOOP PGB MASSES: RESULTS

Explicit computation of the one-loop PGB masses with Effective-Potential methods

$$M^{2}(1,3,0) = 2a_{2}(\omega_{B-L} - \omega_{R})(\omega_{B-L} + 2\omega_{R}) + \frac{1}{4\pi^{2}} \left[\tau^{2} + \beta^{2}(2\omega_{R}^{2} - \omega_{R}\omega_{B-L} + 2\omega_{B-L}^{2}) + g^{4} \left(16\omega_{R}^{2} + \omega_{B-L}\omega_{R} + 19\omega_{B-L}^{2}\right)\right] + \text{Log's}(\mu)$$

$$M^{2}(8,1,0) = 2a_{2}(\omega_{R} - \omega_{B-L})(\omega_{R} + 2\omega_{B-L}) + \frac{1}{4\pi^{2}} \left[\tau^{2} + \beta^{2}(\omega_{R}^{2} - \omega_{R}\omega_{B-L} + 3\omega_{B-L}^{2}) + g^{4} \left(13\omega_{R}^{2} + \omega_{B-L}\omega_{R} + 22\omega_{B-L}^{2}\right)\right] + \text{Log's}(\mu)$$

- For $|a_2| < |0^{-2}$ the phenomenological vacua open up at the quantum level !
- Inherent to all the non-SUSY SO(10) models with a dominant $<45_{H}>$

WHAT ABOUT NEUTRINOS ?

The $45_H \oplus 16_H \oplus 10_H$ scenario fails when addressing the neutrino mass scale

WHAT ABOUT NEUTRINOS ?

The $45_H \oplus 16_H \oplus 10_H$ scenario fails when addressing the neutrino mass scale

• Radiative seesaw
[Witten (1980); Bajc, Senjanovic (2005)]
$$M_R \sim \left(\frac{\alpha}{\pi}\right) Y_{10} \frac{M_{B-L}^2}{M_G} \subset \left(\begin{array}{c} \langle 16_H \rangle \\ 10_H \\ 45_V \\ 10_F \\ 16_F \\ Y_{10} \\ 16_F \\ Y_{10} \\ 16_F \\ \sqrt{\alpha} \\ 16_F \\$$

 $M_{B-L} \ll M_G \implies M_R \ll 10^{14} \text{ GeV} \implies m_{\nu} \sim m_t^2 / M_R \gg 1 \text{ eV}$ Too heavy!

WHAT ABOUT NEUTRINOS ?

The $45_H \oplus 16_H \oplus 10_H$ scenario fails when addressing the neutrino mass scale

• Radiative seesaw
[Witten (1980); Bajc, Senjanovic (2005)]
$$M_R \sim \left(\frac{\alpha}{\pi}\right) Y_{10} \frac{M_{B-L}^2}{M_G} \subset \left(\begin{array}{c} \langle 16_H \rangle \\ 10_H \\ 45_V \\ 10_H \\ 16_F \\ Y_{10} \\ 16_F \\ \sqrt{\alpha} \\ 16_F \\ \sqrt$$

 $M_{B-L} \ll M_G \implies M_R \ll 10^{14} \text{ GeV} \implies m_{\nu} \sim m_t^2 / M_R \gg 1 \text{ eV}$ Too heavy!

Without SUSY it is natural to consider a 126_{H} in place of 16_{H}

- RH neutrino mass scale much better: $M_R \sim Y_{126} M_{B-L} \subset Y_{126} 16_F 16_F 126_H^*$
- Renormalizable Yukawa sector potentially predictive

[Babu, Mohapatra (1993); Bajc, Melfo, Senjanovic, Vissani (2005); Joshipura, Patel (2011)]

Luca Di Luzio (SISSA, Trieste) - Unification without supersymmetry: where do we stand? - Planck 2011 - 7/8

- This result is an artifact of the tree-level potential and quantum corrections have a dramatic impact
- A model featuring 45_H ⊕126_H ⊕10_H in the Higgs sector has all the ingredients to be a viable minimal non-SUSY SO(10) candidate

- This result is an artifact of the tree-level potential and quantum corrections have a dramatic impact
- A model featuring 45_H ⊕126_H ⊕10_H in the Higgs sector has all the ingredients to be a viable minimal non-SUSY SO(10) candidate
- In order to say something sensible:
 - Compute the scalar spectrum (work in progress...)
 - Running including threshold effects
 - Fit of the SM flavour structure (including neutrinos)

- This result is an artifact of the tree-level potential and quantum corrections have a dramatic impact
- A model featuring 45_H ⊕126_H ⊕10_H in the Higgs sector has all the ingredients to be a viable minimal non-SUSY SO(10) candidate
- In order to say something sensible:
 - Compute the scalar spectrum (work in progress...)
 - Running including threshold effects
 - Fit of the SM flavour structure (including neutrinos)
- If compatible
 - Compute the proton decay branching ratios ...

BACKUP SLIDES

Unification without supersymmetry: where do we stand? - Planck 2011

SO(10) AS A THEORY OF FERMION MASSES AND MIXINGS

Renormalizable Yukawa sector with $10_H \oplus 126_H$

• SO(10) Yukawa

 $16_F (Y_{10}10_H + Y_{126}126_H^*) 16_F$

 $10_H = (1, 2, 2) + (6, 1, 1)$ $126_H^* = (15, 2, 2) + (10, 1, 3) + (\overline{10}, 3, 1) + (6, 1, 1)$

• Effective mass sum rule

 $M_{u} = \langle 1, 2, 2 \rangle_{10}^{u} Y_{10} + \langle 15, 2, 2 \rangle_{126}^{u} Y_{126}$ $M_{d} = \langle 1, 2, 2 \rangle_{10}^{d} Y_{10} + \langle 15, 2, 2 \rangle_{126}^{d} Y_{126}$ $M_{e} = \langle 1, 2, 2 \rangle_{10}^{d} Y_{10} - 3 \langle 15, 2, 2 \rangle_{126}^{d} Y_{126}$ $M_{D} = \langle 1, 2, 2 \rangle_{10}^{u} Y_{10} - 3 \langle 15, 2, 2 \rangle_{126}^{u} Y_{126}$ $M_{R} = \langle 10, 1, 3 \rangle Y_{126}$ $M_{L} = \langle \overline{10}, 3, 1 \rangle Y_{126}$ $M_{L} = \langle \overline{10}, 3, 1 \rangle Y_{126}$