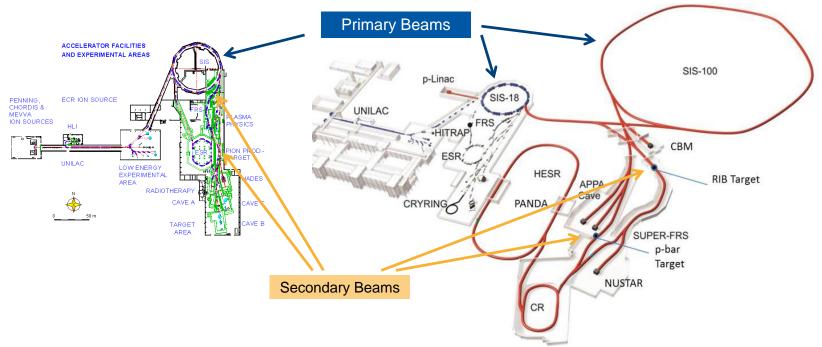


WP16: Intense, RF Modulated E-Beams

for Application in Pulsed Electron Lenses

5th Annual Meeting / 02.05.2022

David Ondreka / GSI


Outline

- Motivation for space charge compensation
- WP16: objectives and achievements
- Beyond ARIES: SCC lens project
- Summary

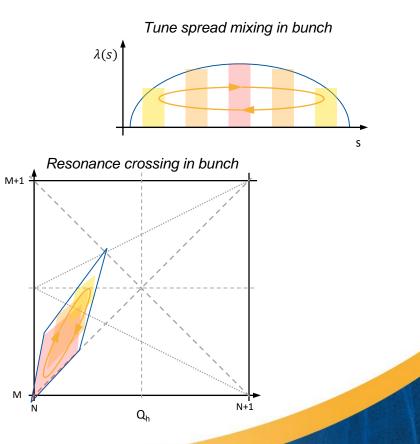
FAIR Intensity Challenges

FAIR integrates existing GSI facility, using synchrotron SIS18 as main injector

FAIR designed to break intensity limits of GSI:

- Primary beam intensities: factor 10 to 100
- Lower charge states to increase space charge limit
- Heavier ions limited by injector and dynamic vacuum
- Intensity requirements expected to rise during FAIR operation
- Planned injector upgrades will make synchrotrons a bottleneck
- Long-term efforts to push intensities for SIS18 and SIS100

Primary Beam Intensities at GSI and FAIR

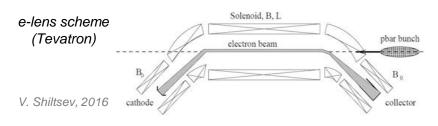

		р	Ar	Xe	U
Charge number	GSI	1	18	48	73
	FAIR	1	10	21	28
Energy [GeV/u]	GSI	4.7	1.7	1.3	1.0
	FAIR	28.8	6.6	4.0	2.7
Intensity [Ions/s]	GSI	1011	8-10 ¹⁰	4-10 ¹⁰	4-10 ⁹
	FAIR	10 ¹³	10 ¹²	5-10 ¹¹	3-10 ¹¹

Space Charge as Intensity Limitation

- Incoherent tune spread through SC
 - Defocusing force due to particles of same charge
 - Modifies single-particle tune in circular accelerators
 - Depends on amplitude and transverse profile
- Tune spread in bunched beams
 - Depends on local line density within bunch
 - Larger peak value due to bunching
 - Synchrotron motion slowly mixes slices
- Beam loss due to tune spread
 - Losses driven by resonances
 - Fast beam-loss on low-order resonances
 - Slow beam-loss due to repeated crossing of resonances through synchrotron oscillations
 - Losses limit maximum intensity
 - Increasing maximum intensity requires shrinking of tune footprint

SC tune spread in bunched beam

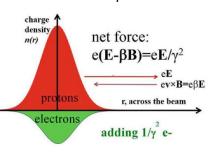
$$\Delta Q_y^{sc} = -\frac{Z}{A} \cdot \frac{r_0}{2\pi\varepsilon_y \beta^2 \gamma} \cdot \frac{ZN\lambda(s)}{\gamma^2 \langle \lambda \rangle}$$

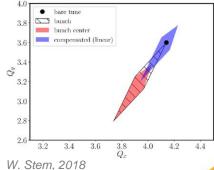


5th Annual Meeting / 02.05.2022 / WP16: IRME / D. Ondreka

Q,

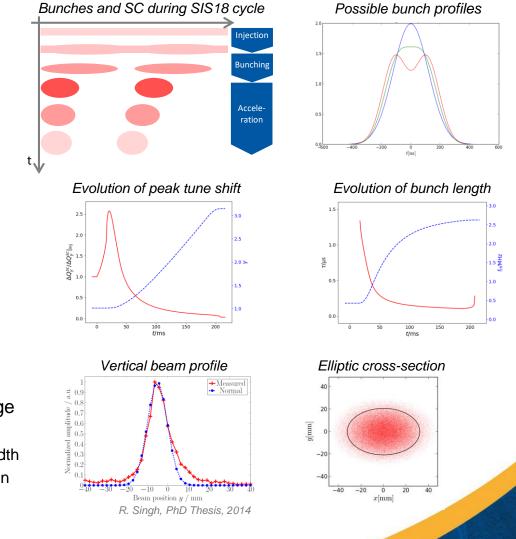
SC Compensation with e-Lenses


- Principle of electron lenses
 - Overlap ion beam with magnetized electron beam
 - Effect on ions through EM fields of electron beam
 - Existing applications
 - Beam cleaning in colliders
 - Beam-beam compensation in colliders
 - Electron cooling in low energy rings
- SC compensation in bunched beams
 - Any compensation must follow line density
 - e-lens well suited for SC compensation
 - Attractive force of e-beam to counter SC force
 - Modulate current at the source to match line density
 - Options for choosing transverse profile
 - Full compensation with matching profile
 - Linear compensation with uniform profile
 - Trade-off: non-linearities vs. footprint shrinkage
 - Active field of research
 - Demonstrator should be flexible to test concepts


SIS18 e-cooler

Full compensation: matched profile

Linear compensation: effect on tune footprint


 $\Delta Q_{y}^{e} = \frac{Z}{A} \cdot \frac{r_{0}}{2\pi\varepsilon_{v}\beta^{2}\gamma} \cdot \frac{I_{e}L_{e}}{\operatorname{ec}\beta_{e}}$

Shiltsev, 2016

SCC Demonstrator: SIS18 as Reference Case

- SCC demonstrator lens in SIS18
 - Aiming at ΔQ^e ≈ 0.1 for single lens
 - Ultimately 3 lenses required for symmetry
- Constraints from SIS18 cycle
 - Parameters determining modulation
 - Tune spread peaks at start of ramp
 → time-dependent amplitude
 - Revolution frequency and bunch length variation
 → bandwidth, time-dependent center frequency
 - Parameters determining transverse profile
 - Concept of matching e-beam shall be tested
- Advantages of low energy ions
 - Large ion beam radii (σ_{x/y} ~ 10 / 20 mm)
 - Long ion bunches $(4\sigma_t > 300 \text{ ns})$
- RF modulated electron gun as main challenge
 - Electron currents of ~10 A at ~30 kV
 - Modulation at 0.4 1 MHz with 10 MHz bandwidth
 - Gaussian transverse profile, elliptic cross-section

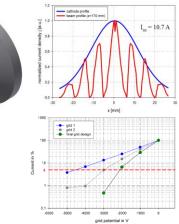
WP16: Objectives

- JRA activity among four beneficiaries CERN, GSI, IAP, RTU
- Manufacturing of an RF modulated electron gun for application in electron lenses
 - High electron currents up to 10 A
 - Gaussian shaped transverse electron beam profile
 - RF modulated at 0.4 to 1 MHz with a bandwidth of up to 10 MHz
 - Grid modulation to lower power requirements on modulator
- Operation of a test stand for the RF modulated electron gun
 - Normal conducting solenoids for beam transport
 - Instrumentation for probing transverse and longitudinal electron beam profiles

RIGA TECHNICAI UNIVERSITY

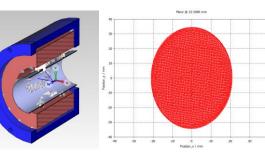
WP16: RF Modulated Gun – Design

- Requirements based on SIS18 reference case
- Thermionic emission from Tungsten cathode
 - Tungsten for robustness, despite high work function
 - Design must tolerate high temperatures > 2500 K
- Modulation by grid to reduce power consumption

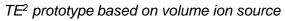

-000 -000 -600 -000 -1000 -1200 -1400 -1400 -1400 -1900 -2000 -2200 -2200 -2400 -2600 -280 -2800

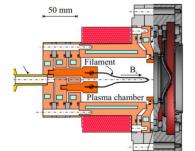
- Gaussian profile by shaping cathode and grid
- Elliptic cross section from round cathode
 - Achievable by integrating quadrupole coils

Electrode design for Gaussian profile

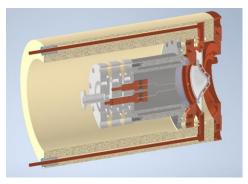


Grid modulation study

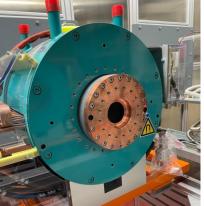

Gun Requirements				
Peak electron current	10 A			
Anode voltage	30 kV			
Cathode radius	26.5 mm			
Distance cathode/anode	20 mm			
Distance cathode/grid	3 mm			
Grid capacitance	75 – 100 pF			
Max. grid voltage	3 kV			
Modulation frequency	0.4 – 1 MHz			
Modulation bandwidth	10 MHz			
Dissipated power	3 – 5 kW			


Elliptic cross-section with quadrupole

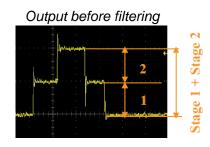
WP16: RF Modulated Gun – Realization

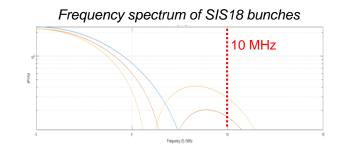

- Development of prototype (TE²)
 - Based on volume ion source
 - Cathode heating by arc discharge from filament
 - Compact and robust design
 - Tested extensively regarding heat tolerance
- Final design by refinement of prototype
 - Optimization of grid and electrodes
 - Housing for integration into gun solenoid
 - Improved water cooling

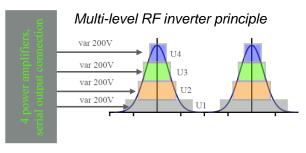


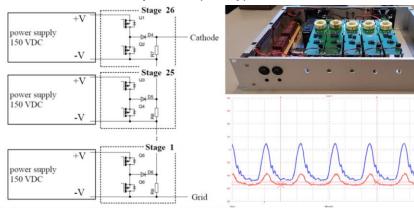


Final IRME gun: design and manufactured device

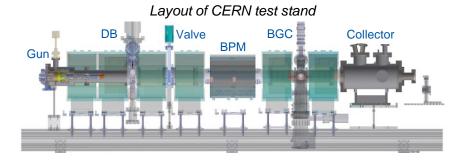







WP16: RF Modulator

- Challenging requirements
 - Sweeping central frequency (0.4 1 MHz)
 - Bandwidth of 10 MHz for SIS18 bunches
 - 3 kV on capacitive load (~100 pF)
 - Long cables or radiation environment
- Design iterations based on prototypes
 - Vacuum tube solution tried but discarded
 - Final design multi-level RF inverter topology
 - 26 modules supplying 150 V each
 - Bandwidth requirements satisfied
 - Allows operation outside tunnel
 - Prototypes with 4 modules built and used
 - Final device not ready due to supply problems
- Additional signal generator for testing
 - Bunch profiles input as waveforms
 - Control via optical fibers for operation on potential



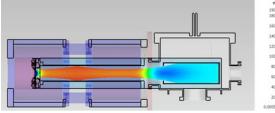
Circuit layout and prototype of final modulator

WP16: Gun Test Stand at CERN

- Designed for CERN HEL gun and IRME gun
 - Co-founded by HiLumi-LHC and ARIES
- Goals
 - Operational experience with high-current e-beams
 - Testing components for HEL lens
 - Characterization of gun (yield, transverse profile)
 - Testing modulator, HV power converters, controls
 - Testing HEL diagnostics (BPM, Gas curtain monitor)
 - Testing components for SCC lens
 - Characterization of gun (yield, transverse profile)
 - Testing HV modulator
- Diagnostics equipment
 - Current transformer at cathode
 - Diagnostic box (YAG screen, movable pin-hole cup)
 - Collector measuring total current
- Test stand successfully completed
 - Inaccessible for IRME gun due to Covid-19 crisis
 - Decision to build second test stand at IAP

Stage 1 of CERN test stand

Diagnostic Box (DB)

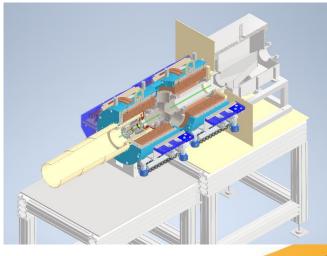

WP16: E-Lens-Lab at IAP (I)

Lab dedicated to e-lens development at IAP

Goals


- Test stand for characterization of electron guns
- Operational experience with high-current e-beams
- Development of energy recovery system
- R & D for electron lens components
- Test stand equipment
 - HV platform up to 50 kV / 20 kVA
 - Two separate benches
 - Two solenoids (0.6 T), Helmholtz coils (0.2 T)
 - Collector Faraday cup up to 27 kW
 - Pressure and temperature diagnostics
 - Transverse diagnostics
 - Flexible set-up for easy change of configuration

Transport simulation for stage 2 (I = 5 A)

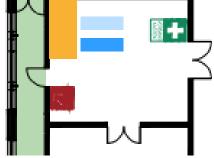


Stage 1 of test stand (present)

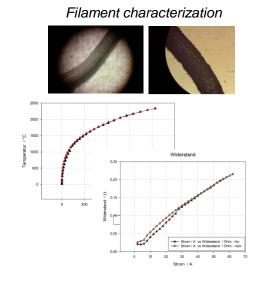
Layout of stage 2 for high intensity operation

WP16: E-Lens-Lab at IAP (II)

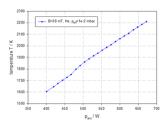
- HV terminal in Faraday cage for power supplies on cathode potential
- Remote control for safe operation
 - User interface for PC control
 - Automated measurement routines
- Floor space and infrastructure for additional installations
- Continued beyond ARIES for R&D on electron lens components

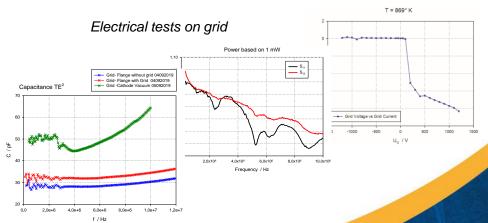

Two benches connected to HV cage


HV terminal inside cage



FS

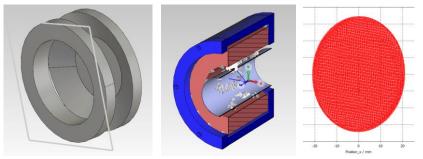

WP16: Gun Tests at IAP

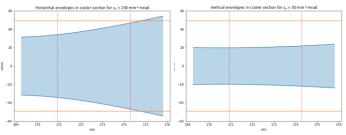

- Basic tests
 - Vacuum conditioning and pressure
 - Control of cooling circuit performance
- Cathode heating
 - Novel concept using directed arc discharge
 - Uniform heating of cathode essential
 - Pyrometric measurements
 - Characterization of filament performance
- Electrical tests on grid
 - Measurements of capacitance
 - Measurements of transmission properties
 - Grid characteristics at low temperatures
- Extraction tests in preparation
 - Intensity limited with stage 1 of test stand
 - Careful intensity ramp-up to avoid damage
 - High power tests up to 5 A with stage 2

Cathode heat-up tests

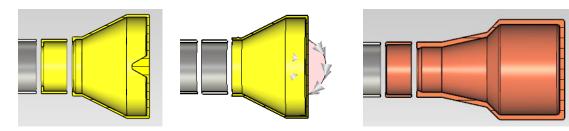
Beyond ARIES: SCC Lens Design

Project for SCC demonstrator lens in SIS18 among GSI, IAP, RTU


- Physical layout and mechanical design of SCC demonstrator at GSI
- Manufacturing and testing of final modulator at RTU
- Development of gun and collector as well as testing of essential components at IAP


Beyond ARIES: SCC Lens Design

- Adapted requirements for demonstrator SCC lens
 - Uniform electron beam to avoid non-linearities
 → design of grid-modulated gun for uniform beam
 - Larger beam size to increase margin
 → beam expansion into interaction solenoid
 - Elliptic cross-section to lower current requirements
 → integration of quad coils around gun
- Collector design crucial component of lens
 - Optimization of bias potential and geometry
 - Minimization of power dissipation
 - Suppression of secondary electrons and reflection
 - Work in progress


Elliptic uniform beam from round cathode using quad

lon beam envelopes in x and y

Studies on optimal collector geometry

Summary

- Motivation for WP16 developments
 - Alleviating space charge related intensity limitations in circular hadron accelerators
 - Particular goal: increasing intensities for FAIR facility by using SCC electron lenses
- ARIES WP16: JRA for development of RF modulated electron gun
 - Requirements derived from SIS18 as reference case
 - Main objective achieved: gun manufactured, modulator prototype ready
 - Full performance not yet demonstrated due to Covid-19 related delays
 - Two test stands at CERN and IAP constructed
- Work to be continued beyond the ARIES project
 - Final modulator will be completed by RTU
 - Second gun for homogeneous transverse profile under design at IAP
 - Design of demonstrator SCC lens for SIS18 ongoing

Thank You, ARIES!

Thanks to all the collaborators who contributed to WP16 during the ARIES project: Adriana Rossi, Sergey Sadovich (CERN) Kathrin Schulte-Urlichs, Sayyora Artikova, Katrin Thoma (GSI) Oliver Meusel, Martin Droba, Julian Rausch, Thomas Dönges (GUF/IAP) Peteris Apse-Apsitis, Ingars Steiks, Johann Van De Pol (RTU)

