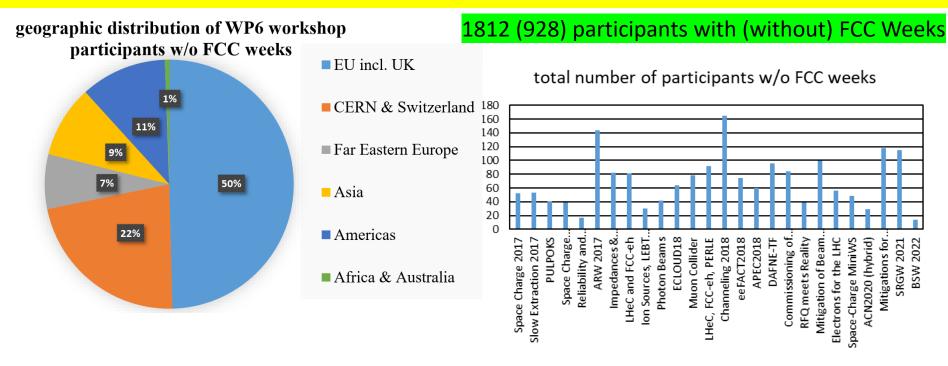
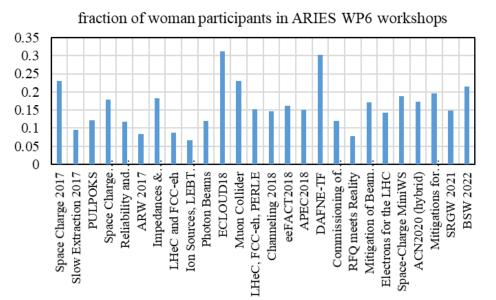


Accelerator Performance and Concepts report from WP6

http://aries.web.cern.ch/content/wp6

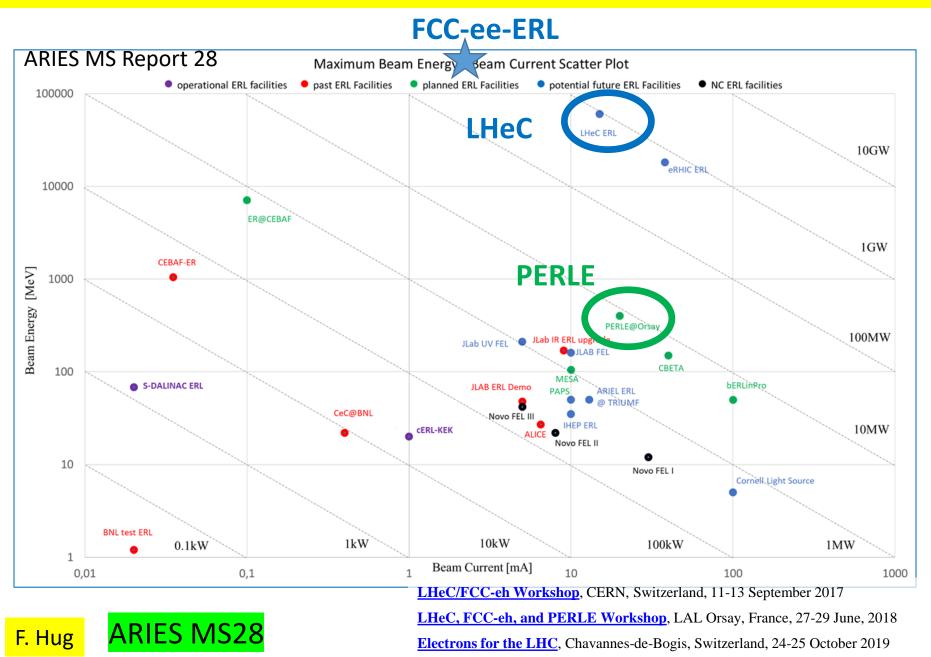

Alessandro Drago / INFN-LNF, **Giuliano Franchetti / GSI & GUF**, Johannes Gutleber / CERN, Klaus Höppner / HIT, Florian Hug / JGU, Mauro Migliorati / Sapienza, Marco Zanetti / U Padova, and **Frank Zimmermann / CERN**


ARIES Annual Meeting

CERN, 3 May 2022

ARIES WP6 workshops

fraction of women participants in all WP6 workshops

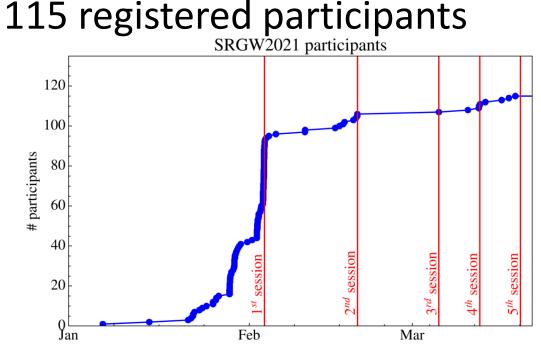

28 WP6 workshops in total

some ARIES WP6 milestones and deliverables

DELIVERABLE: D6.4

ERL landscape

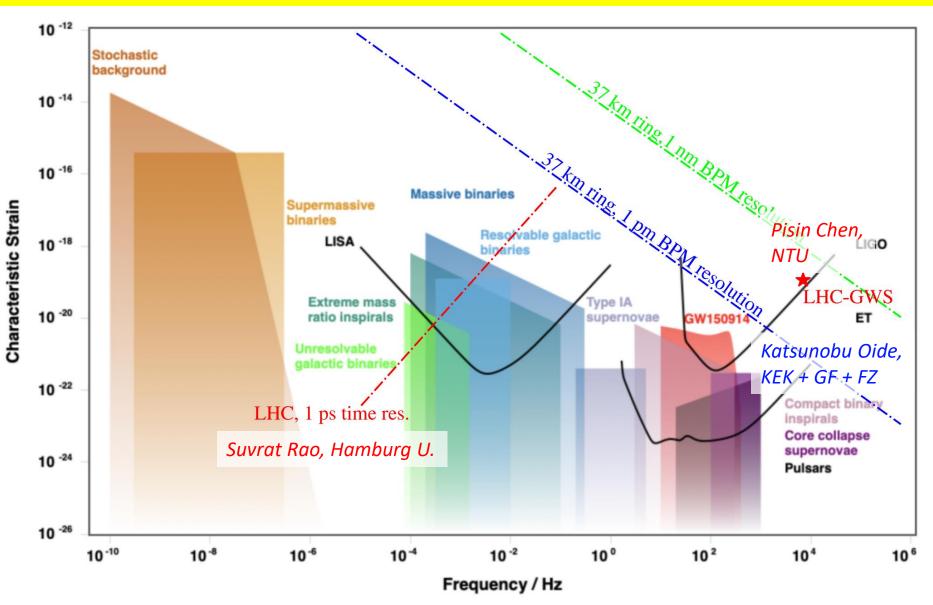



recent HORIZON 2020 ARIES WP6 workshops, a covid circle

- 1. <u>Accelerator Applications of Crystals and Nanotubes</u>, EPFL Lausanne & *hybrid*!, 10-11 March 2020
- 2. <u>Mitigation Approaches for Hadron Storage Rings and</u> <u>Synchrotrons (Mitigations2020), safe virtual space</u>, 22 June – 1 July 2020
- 3. <u>ARIES Workshop on Storage Rings and Gravitational</u> <u>Waves (SRGW2021)</u>, *safe virtual space*, 2 February -18 March 2021
- 4. ARIES WP6 APEC & iFAST WP5.2 PAF joint Brainstorming & Strategy Workshop (BSW22), inperson! Colegio Mayor, Valencia, 30 March -1 April '22

ARIES Workshop on Storage Rings and Gravitational Waves (SRGW2021), virtual space, 2 February -18 March 2021; chaired by G. Franchetti, Marco Zanetti, and F. Zimmermann

Scientific Programme Committee						
William A. Barletta	MIT					
Pisin Chen	NTU					
Raffaele-Tito D'Agnolo	IPHT					
Raffaele Flaminio	LAPP					
Giuliano Franchetti (co-chair)	GSI					
Shyh-Yuan Lee Ind	iana U					
Katsunobu Oide CERN	I & KEK					
Qing Qin ESRF & U.	Peking					
Jorg Wenninger	CERN					
Marco Zanetti (co-chair) U. I	Padova					
Frank Zimmermann (co-chair)	CERN					



main focus: detection and/or generation of gravitational waves or other gravity effects using storage rings & accelerator technologies

Sessions:

2/2/2021, Introduction to Gravitational Waves and their effects, chair: *Pisin Chen / NTU Taiwan* 18/2/2021, Measurements and sensitivity, chair: *Shyh-Yuan Lee / Indiana U* 4/3/2021, Proposals and Schemes, chair: *Jörg Wenninger / CERN* 11/3/2021, Gravitational wave generation and detection, chair: *Frank Zimmermann / CERN* 18/3/2021, Ground motion and final discussion, chairs: *Giuliano Franchetti/GSI; John Ellis/CERN*

Detection (& Generation) Plot emerging from SRGW2021

G. Franchetti et al.

Ranking of performance degrading mechanisms for hadron storage rings and synchrotrons

Summary of the accelerator characteristics and main beam features at the laboratories participating in the ARIES ranking effort

Laboratory	Accelerator	Accelerator	Initial/final	Particles	Rms	Ramp time
	name	Circumference	Energy	per bunch	bunch	(s)/ stored
		(m)	(GeV)		length	time (s)
					(cm)	
Fermilab	Booster	476	0.4/8	5E10	30	0.033
BNL	RHIC	3834	25/255	2E11	0.6	300/3600
CERN	SPS	7000	26/450	1.1E11	15	5/20
SLAC/SSRL	SPEAR3	234	3	8.7E9	0.6	NA
J-PARC	Main ring	1567.5	3/30	3.3E13	1500	1.4/0~2
INFN-LNF	DAFNE	97	510	1E11	1.06	0/1200
GSI	ESR	108	0.4/0.004	1E8	200	10/2000
GSI	SIS18/SIS100	216/1000	0.011/2.7	5E11	3000	0.5

Ranking results on performance degrading mechanisms for hadron storage rings and synchrotrons

R	Intensity limitation	ave	std		ARI	ES De	5 <mark>.1</mark>
1	Beam loss	3.12	1.16				
2	RF Power	2.75	1.2				
3	Single bunch instability	2.75	0.82				
4	Multi-bunch instability	2.75	1.56		Other	ave	std
5	Injector	2.6	1.6		performance		5 CC
6	DA	2.375	0.99		limitation		
7	Collimation	2.25	1.09		Beam loss	3.37	1.21
8	Momentum Acceptance	2.25	1.2	$-\frac{1}{2}$	Halo	2.5	1.21
9	E-Cloud	2.25	1.3		development	2.3	1.44
				3	Collimation	2.37	1.21
				4	Dynamic	2.37	1.4
R	Brightness limitation	ave	std		vacuum		
1	Nonlinearities	3.625	0.99	5	Peak luminosity	2.12	1.53
2	Space charge	3.125	1.53	6	Spill. Structure	2.0	1.73
3	Beta-beating	2.5	1.3	7	Quenches	1.37	0.69

2.5

2.0

1.75

4

5

6

Injector

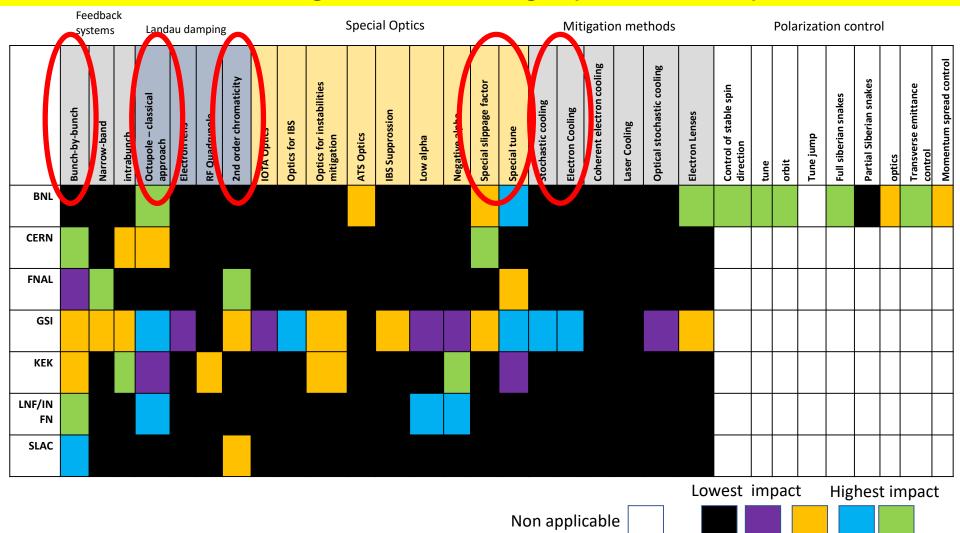
IBS

Beam-beam

8

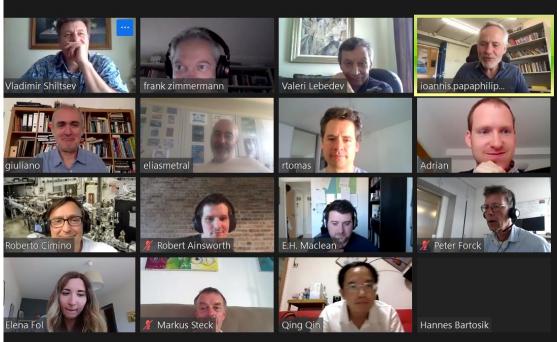
1.75

1.41


1.39

UFO/dust

End 2018, APEC2018 workshop


1.12 0.33

full mitigation ranking by laboratory

For FNAL the Fermilab booster is considered, for BNL the RHIC, for CERN SPS, for SLAC SPEAR III, for KEK the J-PARC Main Ring, for INFN-LNF DAΦNE, and for GSI the ESR, SIS18 and SIS100. ARIES MS31 APEC2018 and Mitigations 2020 workshops

ARIES Mitigations workshop & Ranking for ARIES MS31 Space Charge Effects Summer 2020

GSI: UNILAC upgrade measures: high intensity **RFQ, heavy ion stripping**, end-to-end optimization, etc.;

SIS18: intensity limitation mechanism: **dynamic vacuum**, other beam instability mechanisms, etc; mitigation: **feedbacks**. Storage rings: **precision beam controls**.

For **RHIC and EIC-** some unique techniques: 1) **bright sources** (high-intensity H-, polarized H-, laser+EBIS); 2) **orbit/tune/coupling/ (chromaticity) feedbacks on ramps/in stores, transitions jumps** (in AGS, and in RHIC – a slowly ramping SC machine); 3) **beam-beam compensation with electron lenses**. Importantly, **beam cooling** fundamentally changes how RHIC is operated. Two cooling systems are operational (**stochastic cooling for high-energy ions; electron cooling for low-energy Au**), leading to much higher luminosity and cleaner operating conditions. A **novel strong hadron beam cooling scheme.** **J-PARC Main Ring** (MR) Fast Extraction (FX) operation: 1) **Injection beam optimization** with the Rapid Cycling Synchrotron (RCS) parameters; 2) RF operation with **2nd harmonic** and the **new feedback** system; 3) **Correction of the beta modulation and resonances**; 4) Transverse instabilities suppressed with **chromaticity settings & intra-bunch feedback systems**.

CSNS project - main strategies: **tune optimization** & proper **injection scheme**. Present limits are pushed through: 1) Installing **trim quadrupoles** to shape the tune curves; 2) Installing **AC sextupoles** to control the coherent oscillations; 2) **Re-installing injection components** to realize the real correlated painting scheme; 3) Re-sorting the dipoles according to the magnetic field measurement in AC mode

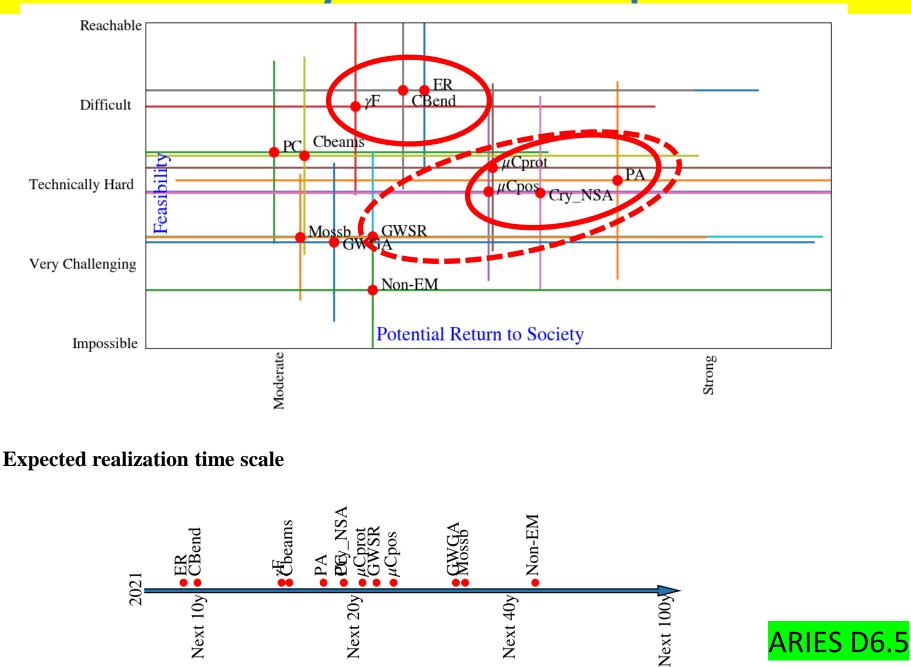
FNAL PIP II	Driving forces	Near Term Mitigations	PIP-II Era Mitigations
Emittance growth at injection	Space charge	Resonance (1/2) compens.	Higher inj. energy; Painting inj; Two- stage collimation
Longitudi nal losses at inj.	Adiab. Capt. ; Field stability	LLRF Upgr. ; Improved field stab.	Direct bucket injection w. chopping
Loss during transition	Instabilities; Emittance growth at inj.	Damper upgrades	Increased transition rate Reduced leakage
Extraction losses	Vert. Ap. restriction		Magnets w. larger aperture in ext. region

final community survey on (far)-future options

140 The survey invitation was 120 sent to 388 different 100 participants from six 80 60 **ARIES** exploratory 40 workshops. In total 94 20 experts responded. 0 Photon Muon APEC2018 ACN2020 Mitigations SRGW 2021 Beams Collider (hybrid) for Hadron (virtual) Rings (virtual)

number of participants

(Far-)Future Options for Survey


- 1. Energy Recovery (>50 GeV and/or > 50 mA)
- 2. Plasma Acceleration
- 3. Photon Collider
- 4. Gamma Factory
- 5. Muon Collider, positron based
- 6. Muon Collider, proton based
- 7. Crystal/Nanostructure Acceleration
- 8. Crystal Bending
- 9. Crystalline Beams
- 10. Gravitational Wave Detection using Storage Rings
- 11. Gravitational Wave Generation using Accelerators
- 12. High Energy Photon Generation using Entanglement and Moessbauer Effect
- 13. Non-electromagnetic acceleration or focusing mechanisms incl. gravity based schemes

ARIES survey criteria & choices

E 11 11 4	Importance/	Risk of	Potential Return	Time seals	Numeric
Feasibility	Priority	Failure	to Society	Time scale	ranking
Easy	Marginal	None	Negative	Next 5 years	1
Reachable	Relevant	Moderate	Marginal	Next 10 years	2
Difficult	High	High	Moderate	Next 20 years	3
Technically hard	Very high	Certain !	Strong	Next 40 years	4
Very challenging	Тор		Game Changer !	Next 100 years	5
Impossible					6

survey results - example

April 2021

White List of Ranked Far-Future Accelerator Options

ARIES D6.5

Time scale	Priority and focus
10-15 years	Energy recovery
	Crystal bending
	Gamma Factory
15-30 years	Proton based muon collider
	Plasma acceleration
	Positron based muon collider
	Crystal and nanostructure acceleration
	Gravitational wave detection using storage rings
	Low or no priority
	Photon collider
	Crystalline beams
	"Moessbauer acceleration" using photon entanglement
	Gravitational wave generation using accelerators
	Non-electromagnetic acceleration or focusing mechanisms

key results from WP6 APEC

- **Reviving and advancing the designs of a muon collider,** either proton based or positron based ; this will be pursued in I.FAST, through a dedicated working group and/or European R&D panel, and the US Snowmass process
- Launching discussions on using storage rings & accelerator technologies for detection or generation of grav. waves, which may gather significant momentum in the coming years, and already stimulated concrete plans for experiment in LHC access shaft
- Cementing the case for energy-recovery based colliders, with input to the ESU19/20 process, & establishment of ERL R&D guidelines [D6.4]. The WP6 results also inform the R&D program for the PERLE test facility at IJClab and other European ERL projects (MESA, BerlinPRO, DIANA,...), and the special LDG ERL R&D Panel.
- Developing design, feasibility demonstration and possible operation modes for proposed Gamma Factory
- **Preparing future R&D paths for the application of bent crystals** (now in HL-LHC collimation baseline) **& for crystal/nanostructure acceleration**
- **Optimal RAMS characteristics for accelerators** [D6.2] availability critical systems and availability model (FCC-ee); measures to improve reliability of key systems, modelling platform (FCC-hh); open data infrastructure for accelerator reliability
- **Performance limitations in hadron synchrotrons** [D6.1] highlighting beam loss, single-bunch instabilities & nonlinearities; review & ranking of mitigations [MS31, D6.3]
- Ranking of (far-)future accelerator options [D6.5] priority for (1) ERLs, crystal bending, GF, (2) muon collider(s), plasma & crystal & nanostr. Accel., grav. wave detection

WP6 potential impact on science or society

benefit to science:

- foundations for defining **new directions in accelerator science**
- focused the **attention of the community on certain key aspects**, which will allow designing future accelerators for new discoveries, while optimizing existing ones; in particular
 - sparked an interest in using storage rings and accelerator technologies for gravitational-wave research
 - advanced several studies on the high-precision operation of accelerators and beam diagnostics
- more direct benefit to society:
 - controlling the beam delivery and rendering accelerator operation more reliable
 - pertinent methodologies will **eventually be transferred to all types of accelerator applications**, including for industrial and medical applications

WP6 exploitable foregrounds

Type of exploitation foreground	Description of exploitable foreground (relevant deliverable)	Purpose (How the foreground might be exploited and by whom)	Potential/expected impact (quantify where possible)	Exploitable product(s) or measure(s)	Sector(s) of application	Timetable, commercial or any other use
GAK, EUP, SIN	Assessment and ranking of far-future accelerator options	Exploited and pursued in I.FAST, and in parallel by the European Accelerator Expert Panels set up by CERN Council and LDG, by the EPS-AG strategy discussions, and by the US Snowmass process	Guidance & prioritization of accelerator R&D over the coming decades. Input to expert panels and the next ESU process.	Published white list of far-future options	Accelerators, particle physics, and nuclear physics, photon sciences, gravitational physics	Medium & long 5-30 years
GAK, EUP, SIN	Improved Reliability and Availability of Particle Accelerators	Exploited, applied and pursued for improving accelerator operation, and in the design of future accelerators; shared use of ARIS system	Enhanced availability and reliability of future colliders, medical accelerators, light sources, and accelerator-driven systems	Report; reliability models, newly cross-linked communities, ARIS PoC	HEP accelerators, ADS, photon sciences, nuclear science, medical accelerators	Short & medium, 0-10 years
GAK, EUP	Revival and advanced designs of muon colliders	Exploited and pursued in I.FAST, and in parallel by the European Accelerator Expert Panels set up by CERN Council and LDG, by the EPS-AG strategy discussions, and by the US Snowmass process	So far: Muon collider R&D supported by ESU 2020; muon collider design study launched; test facilities under discussion; Future: work towards CDR.	Dedicated workshop and deliverable, reports	Particle Physics, HEP Accelerators	Short & medium, CDR in 5 years
GAK, SIN	ERL R&D guidelines	Exploited and pursued in I.FAST, and by the European Accelerator Expert Panels set up by CERN Council and LDG, and, finally, the PERLE project	Realization of test facility PERLE; higher current ERLs	Report and database	Particle Physics, nuclear physics	Short & medium, within 5 years
GAK. EUP	Possibility of detecting gravitational waves at storage rings or using accelerator technologies	Exploited and pursued in I.FAST, and by the AEON/AEDGE collaboration developing an experiment based on the LHC infrastructure	"Accelerator experiments" on novel ways to detect gravitational waves and over extended frequency scales; newly formed collaboratiosn across communities	Reports	Gravitational wave physics, accelerators, particle physics	Short & medium & long, 0-30 years
GAK, EUP, SIN	"Gamma Factory" option	Exploited and pursued by the PBC effort at CERN, with staged beam experiments at the SPS and LHC	Gamma factory based on partially stripped heavy ion beams in the LHC, with numerous applications	Reports	Particle physics, nuclear physics, material sciences	Medium, 5-10 years
GAK, EUP	Novel options for extremely high-gradient acceleration: crystals and nanostructures	Exploited and pursued in I.FAST, in te US Snowmass process, and by a global collaboration	Ultracomoact accelerators with accelerating gradients > 1 TV/m	Reports	All types of accelerator applications, incl. medical accelerators	Long, 15-30 years

WP6 publications

> 60 articles including, in 2021 (all with ARIES acknowledgement) *collaboration enabled by ARIES

V. Shiltsev and F. Zimmermann, "Modern and future colliders," Rev. Mod. Phys. 93, 015006 (2021) <u>https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.93.015006</u>
G. Franchetti, F. Zimmermann, and *M. A. Rehman**, "Trapping of neutral molecules by the beam electromagnetic field," Phys. Rev. Accel. Beams 24, 054001
<u>https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.054001</u>
Z. Nergiz, *N.S. Mirian**, A. Aksoy, D. Zhou, F. Zimmermann, H. Aksakal, "Bright Angstrom and Picometre Free Electron Laser Based on the LHeC Energy Recovery Linac", Phys. Rev. Accel. Beams 24, 100701

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.100701

REVIEWS OF MODERN PHYSICS, VOLUME 93, JANUARY-MARCH 2021

Modern and future colliders

V. Shiltsevo

Fermilab, P.O. Box 500, MS339, Batavia, Illinois 60510, USA

F. Zimmermanno

European Organization for Nuclear Research, CERN, 1211 Geneve, Switzerland

(published 3 March 2021)

Since the initial development of charged particle colliders in the middle of the 20th century, thes advanced scientific instruments have been at the forefront of scientific discoveries in high-energy physics. Collider accelerator technology and beam physics have progressed immensely and moden facilities now operate at energies and luminosities many orders of magnitude greater than th pioneering colliders of the early 1960s. In addition, the field of colliders remains extremely dynami and continues to develop many innovative approaches. Indeed, several novel concepts are currently being considered for designing and constructing even more powerful future colliders. The colliding beam method and the history of colliders are first reviewed. Then, the major achievements o operational machines and the key features of near-term collider projects that are currently unde development are presented. The review concludes with an analysis of numerous proposals and studie for distant-future colliders. The evaluation of their respective potentials reveals promising prospect for further significant breakthroughs in the collider field.

DOI: 10.1103/RevModPhys.93.015006

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 100701 (2021)

Bright Ångstrom and picometer free electron laser based on the Large Hadron electron Collider energy recovery linac

Z. Nergizo*

Nigde Omer Halisdemir University, Faculty of Arts and Sciences, Physics Department, 51200 Nigde, Turkey

N.S. Miriano

Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany, and European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland

A. Aksoyo

Ankara University, Institute of Accelerator Technologies, 06830, Ankara, Turkey, and Turkish Accelerator and Radiation Laboratory, 06830, Ankara, Turkey

D. Zhouo

High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan

F. Zimmermann[©] European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland

H. Aksakal

Kahraman Maras Sutcu Imam University, 46040 Kahramanmaras, Turkey

(Received 12 July 2021; accepted 23 August 2021; published 7 October 2021)

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 054001 (2021)

Editors' Suggestion

Trapping of neutral molecules by the beam electromagnetic field

G. Franchetti®

GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany, and Helmholtz Research Academy Hesse for FAIR (HFHF), GSI Helmholtz Center, Campus Frankfurt, Max-von-Laue-Straße 12, 60438 Frankfurt, Germany

F. Zimmermann^o

European Organization for Nuclear Research (CERN), Esplanade des Particules 1, 1217 Meyrin, Switzerland

M. A. Rehman[©]

High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, Japan, 305-0801, Japan, and The Graduate University for Advanced Studies (SOKENDAI), School of High Energy Accelerator Science, Tsukuba, Ibaraki 305-0801, Japan

(Received 12 January 2021; accepted 8 March 2021; published 12 May 2021)

WP6 - thank you !

