Ultra-low emittance rings: report for WP7

R. Bartolini (DESY), M. Biagini (INFN), M. Böge (PSI), R. Nagoaka (SOLEIL), A-S Müller (KIT), Y. Papahilippou (CERN)

- ARIES WP7 mission and activities
- ultra low emittance rings examples
- (some) technological challenges and contributions of ARIES WP7
- Conclusions and future work with I-FAST

WP7: Rings with Ultra-Low Emittance (RULε)

Mission of the network

Fostering networking activities, exchange of ideas and staff in the accelerator community involved in design, construction and operation of ultra-low emittance rings

(light sources, HEP: damping rings and colliders)

via

General Workshops
Topical workshops
Student support (and student prizes)
Supporting staff for joint experiments
engagement with industrial partners

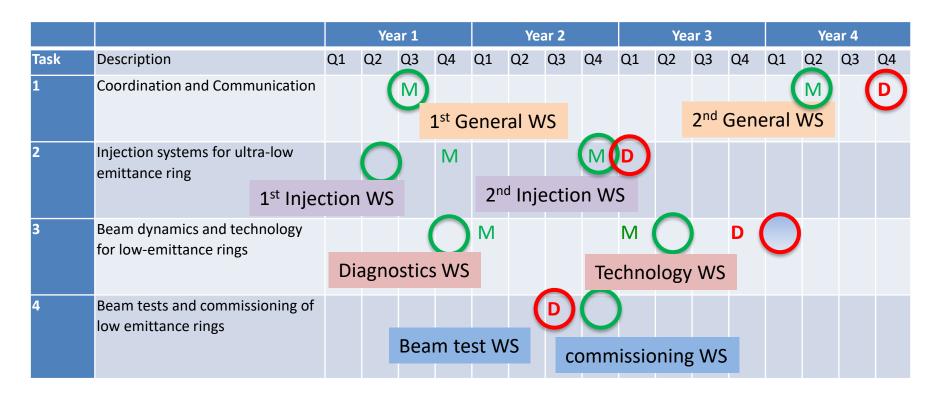
WP7: Tasks description

WP7 addressed key design and technology challenges in the development of ultra-low emittance rings and tests of key aspects of the beam dynamics

- Task 7.1. Coordination and Communication (R. Bartolini, UOXF)
- Task 7.2. Injection Systems for U-LER (M. Boege, PSI)
- Task 7.3. Technology for ultra low emittance rings
 (Y. Papaphilippou, CERN, M. Biagini, INFN, R. Nagaoka, SOLEIL)
- Task 7.4. Beam tests and commissioning of U-LER (A.S. Mueller, KIT-ANKA)

WP7: milestones and deliverables

Milestones: General and Topical workshops


MS33	First general workshop of the RULE network (Task 7.1)	WP7	41 - UOXF	9	Agendas, attendance lists on Indico
MS34	First topical meeting of the RULE network: injector (Task 7.2)	WP7	41 - UOXF	12	Agenda, attendance lists on Indico
MS35	First topical meeting of the RULE network: technology (Task 7.3)	WP7	1 - CERN	15	Agenda, attendance lists on Indico
MS36	Second topical meeting of the RULE network: injector (Task 7.2)	WP7	41 - UOXF	24	Agenda, attendance lists on Indico
MS37	Second topical meeting of the RULE network: technology (Task 7.3)	WP7	1 - CERN	27	Agenda, attendance lists on Indico
MS38	Second general workshop of the RULE network (Task 7.1)	WP7	41 - UOXF	33	Agenda, attendance lists on Indico

Deliverables: summary report on workshops and beam tests

D7.1	First beam tests for low emittance rings	WP7	41 - UOXF	Report	Public	18
D7.2	Final report on injection schemes and injector studies	WP7	41 - UOXF	Report	Public	27
D7.3	Final report on technology for low emittance rings	WP7	1 - CERN	Report	Public	36
D7.4	Final report on the Rings with Ultra-Low Emittance network	WP7	17 - KIT	Report	Public	46

ARIES WP7 RULE: milestones and deliverables

All milestones and deliverable reached in year 4

Actually 10 years of LER workshops

1th Low Emittance Rings Workshop, 12-15 January 2010 CERN – participants 70

https://ler2010.web.cern.ch/

2th Low Emittance Rings Workshop, 3-5 October 2011 Heraklion, Crete

https://lowering2011.web.cern.ch/

3th Low Emittance Rings Workshop 8-10 July 2013 Oxford University

https://indico.cern.ch/event/247069/overview (EuCARD-2) – participants 80

4th Low Emittance Rings Workshop, 17-19 September 2014, INFN-LNF Frascati

https://agenda.infn.it/event/7766/ (EuCARD-2) – participants 67

5th Low Emittance Rings Workshop, 15-17 September 2015 ESRF, Grenoble

https://indico.cern.ch/event/395487/overview (EuCARD-2)

6th Low Emittance Rings Workshop, 26-28 October 2016, Synchrotron SOLEIL

https://www.synchrotron-soleil.fr/en/events/low-emittance-rings-workshop-2016 (EuCARD-2)

7th LER Workshop, 15-17 January 2018 CERN (ARIES)

https://indico.cern.ch/event/671745/

8th LER Workshop 26-30 October 2020 INFN-LNF Frascati (held remotely) (ARIES)

https://agenda.infn.it/event/20813/overview - participants 160

Courtesy S. Guiducci

Topical workshop

Many topical workshops:

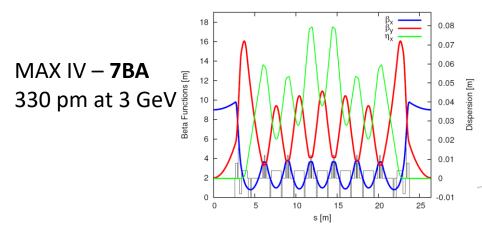
```
Low emittance ring technology
    ALERT 14 Valencia
    ALERT 16 Trieste
    ALERT 19 Ioannina (ARIES)
Collective effects
    TWIICE 2014 Soleil
    TWIICE 2016 Diamond
Diagnostics
    DULER Diamond 2018 (ARIES)
Injection
    TWIIS-1 BESSY 2017 (ARIES)
    TWIIS-2 PSI 2019 (ARIES)
Commissioning
    KIT 2019 (ARIES)
```


High Energy Physics to Photon Science

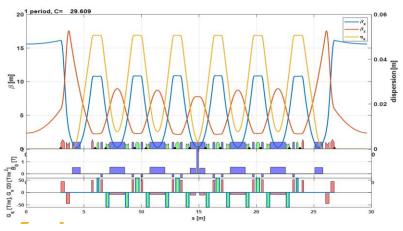
In the last 10 years EUCARD2 and ARIES have seen a shift from a community driven in majority by HEP projects, network and R&D to a community based in majority on light sources

Evolution of the field (personal, i.e. limited view)

Hot topics in 2011:


- Fast HV Kickers (ILC)
- Low emittance operation in the V plane (Quantum LOVE prize)
 Light source were used as "examples" by damping rings for low emittance tuning

Upgrade projects based on MBA (2012 - today)


 Design concepts: MBA, HMBA (merging design concepts of HEP and light sources), novel injection schemes, magnet and vacuum technology, opţimisation tools (DA/MA and commissioning)

Low emittance lattice types

The classical Multibend Achromat: the MAX IV- type cell is implemented in different forms (sextupoles distribution) in SIRIUS, SLS-II, SKIF, ELETTRA2.0 (possibly with reverse bends)

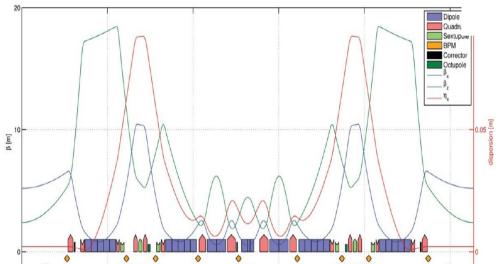
SKIF (Novosibirsk) - 7BA 75 pm at 3 GeV

Layout and optics of an arc

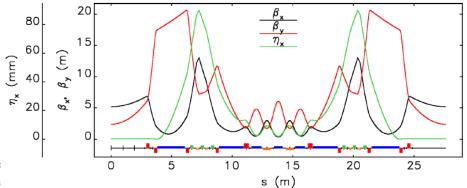
(containing a central superbend) 0.06 0.02 0.01 0.02 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.06

SLS-II (PSI) – **7BA** with superbend 157 pm at 2.7 GeV

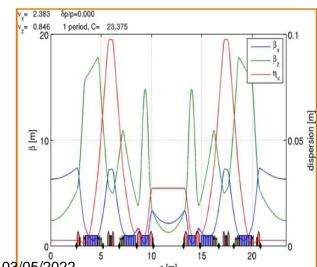
modified-TME cells flanked by matching cells



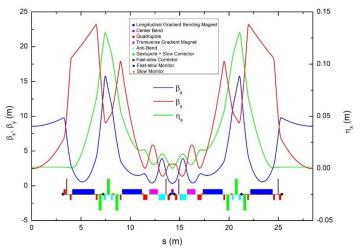
Examples of implementation


Hybrid Multibend Achromat (Raimondi) based on longitudinal gradient dipoles and cancellation of nonlinear aberration by

sextupole pairing


ESRF-EBS Hybrid 7BA cell: 135 pm 6 GeV

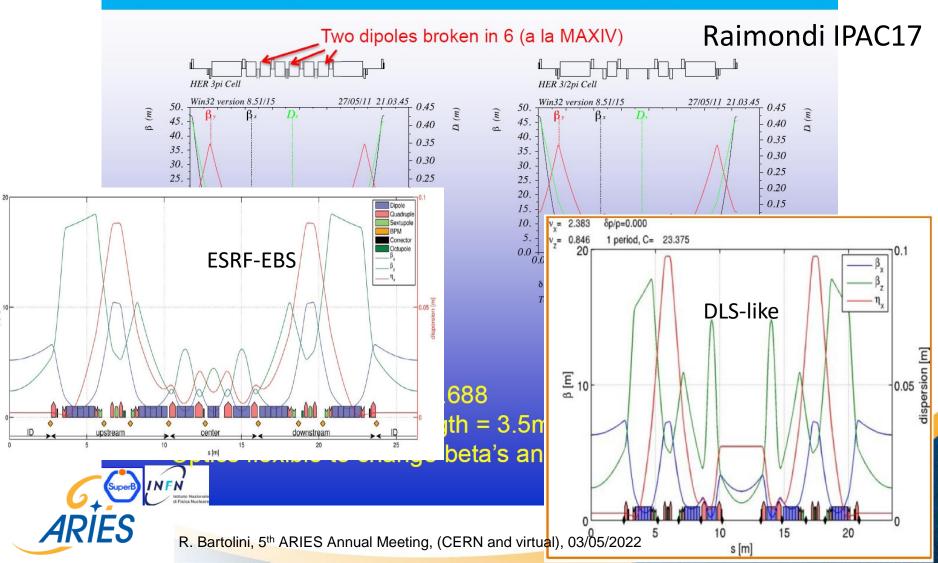
APS-U Hybrid 7BA cell: 42 pm 6 GeV (HEPS 36 pm - PETRA IV 20 pm)


Diamond-II cell: 135 pm 3.5 GeV modified ESRF-EBS cell

... and more new projects

4GSR Pohang Accelerator Laboratory, Korea

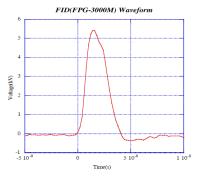
General Parameter			
Energy / GeV	4.0		
Symmetry / Sub-Symmetry	28		
Straight Sections: No & Length / m	28 / 6.5		
Ring Circumference / m	798.8		
# Dipole Magnets	28 * 7 = 196		
Nat. Emittance / prad m	58		
regular hor/ver @ coupling	55 / 6 @ 10 %		
Diffraction limited source for	λ > 1.7 / 0.365 nm		
Energy spread	1.20E-3		
Bunch Length $\sigma_{\rm t}$ / ps	10.68 (without HC) / 53.40 (with HC)		


BESSYIII – Helmholtz Zentrum Berlin

- Energy = 2.5 GeV
- Emittance ~ 100 pm rad
- I ~ 300 mA
- 16 straights
- 5.6 m straight length (max. 5 m useable length)
- Circumference max. 320 m.
- MBA with
 High coherence fraction from 100 eV
 to 2.5 keV
 Flexible repetition rates: TRIBs
- TopUp full-energy injection
 (low emittance combined function booster, 1
 Hz, in the same tunnel with 100 150 MeV
 linac injector)

Cross-fertilisation SR-HEP

SuperB lattice after 1° Low emittance workshop (2011, CERN)

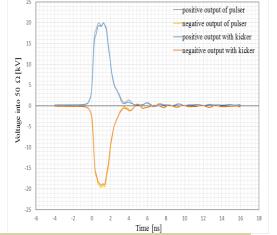



Cross-fertilisation SR-HEP

The technology of fast (~ns) high voltage (tens of kV) kickers originally devised for HEP damping rings has found crucial applications in novel injection schemes for ultralow

emittance light sources

Pulse power supply (FID FPG5-3000M)

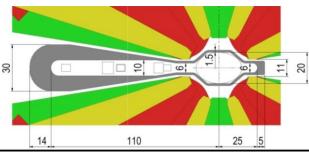

Pulse width(FWHM) = 2ns Pulse height = 5.8kV Rise time = ~1.5ns(5%~95%) Time jitter = ~29ps Amplitude Jitter = 0.72% (limited by the scope resolution)

Naito KEK @ LER 2010

Kentech/Sydor 2ns – 3 kV

HEPS - 2018

300mm long kicker: Pulse voltage: \pm 20kV into 50Ω Tr(10%-90%)=670.7ps Tf(90%-10%)=1.4ns FWHM=1.9ns

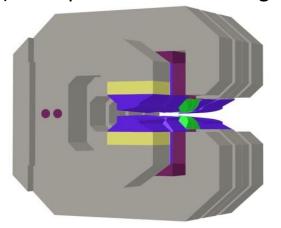

10.1.14

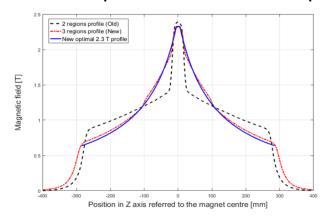
WP7.3: High gradient magnets and small chambers issues

	energy		MAX b''	MAX b'''	min. bore
	(Gev)	T/m	T/m ²	T/m³	radius (mm)
ALS-U	2.0	105	10500	n/a	12.0
ELETTRA 2	2.4	50	4000	45000	13.0
SLS-II	2.7	97	8000	270000	10.5
SOLEIL-U	2.75	<110	16000	1500000	8.0
Diamond II	3.5	85	7700	660000	12.0
SIRIUS	3	45	2400	n/a	14.0
APS-U	6	86	6300	n/a	13.0
ESRF-EBS	6	90	3200	37000	12.8
HEPS	6	80	7500	670000	12.5
PETRA IV	6	115	4000	150000	11.0

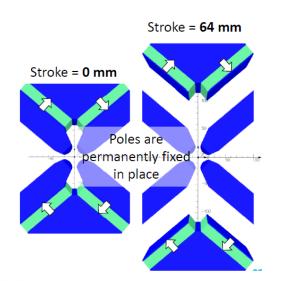
High gradients require

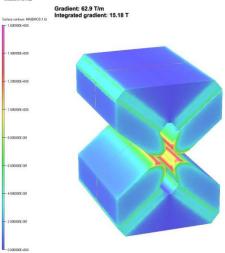
- small bore radius
- difficult vacuum system design (e.g. NEG, extraction of photons)


Vanadium Permendur (e.g. Vacoflux) poles increasingly used


Design optimised for efficiency (e.g. including PM and minimisation of power consumption in cables)

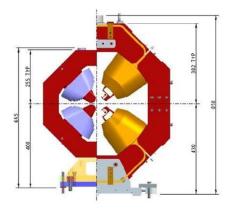
WP7.3: Novel magnet designs were extensively discussed


Longitudinally variable dipole are used in many light sources (ESRF-EBS, PETRA IV, SLS-II) Example with transverse gradient developed for the CLIC damping ring



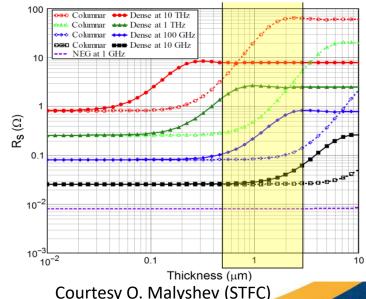
Courtesy Y. Papaphilippou (CERN)

Permanent magnet based quadrupoles: tuneable ZEPTO for the CLIC damping rings

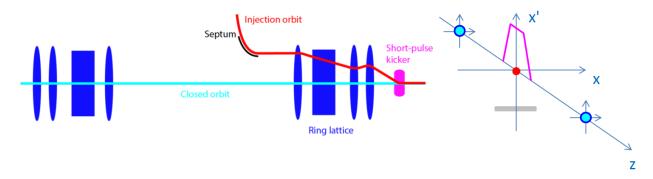


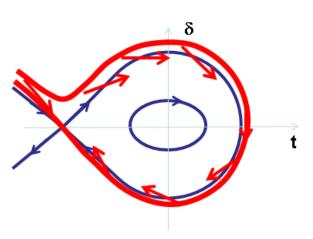

Courtesy B. Shepherd (STFC)

WP7.3: NEG coating in small size vacuum chamber

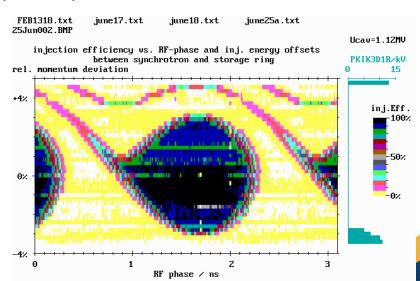

Small bore radius magnet imply the use f small aperture vacuum chamber. Effective vacuum can be achieve with extensive use of NEG coating

- uniformity requirement on the coating
- impedance effect of the coating
- logistic in the activation procedure
 (e.g. in-situ vs ex-situ activation, # cycles)


Resistivity as a function of the NEG thickness for different frequencies. The yellow band indicates the typical values chosen in accelerators.

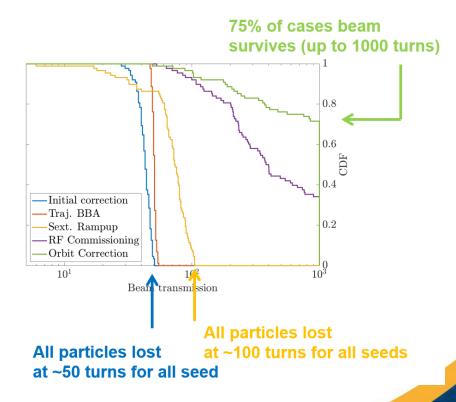


WP7.4: Novel injection scheme were tested


Longitudinally off-energy injection concepts were tested at BESSY-II

Injection efficiency for off-phase off-energy injected beam were measured at BESSY Showing the feasibility of capture and possibly accumulation

Task 7.4: beam dynamics and commissioning simulations


Detailed simulations of the commissioning process are carried out by all major projects see e.g. KIT 2019 (ARIES), Sajaev PRAB, 2019 - Liuzzo, Virtual commissioning | ESRF

- threading beam for first turn
- switching on sextupoles and RF
- achieving stored beam (many thousands turn tracking)
- orbit corrections
- beam based alignment
- optic corrections (LOCO)

Machine models include realistic errors from magnetic measurements and alignment

Possible real life scenarios are extensively simulated years before the start of he commissioning! (ESRF-EBS, APS-U, ALS-U,...)

Example of commissioning simulations developed for PIV

Extremely quick commissioning of ESRF-EBS

ESRF-EBS (140 pm – 6 GeV) has achieved the nominal operational parameters ahead of schedule

28/11/2019: start of commissioning (3 turns)

06/12/2019: first stored beam

15/12/2019: first accumulation

14/3/2020: 200 mA

P. Raimondi in http://agenda.infn.it/event/20813

IFAST WP7 task 7.2: Networking

Networking activities on low emittance ring will continue in I-FAST in WP7: High brightness accelerator for light sources

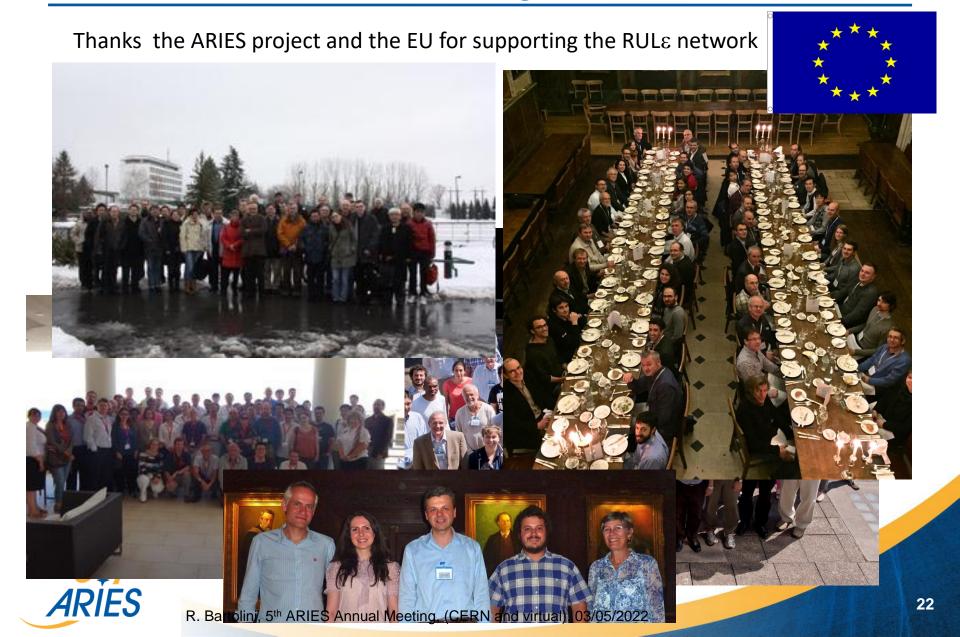
Task 7.2: Led by KIT

Continuation of the network activity on the themes of

Machine design
Low emittance ring technology
Collective effects
Injection systems
Commissioning

IFAST WP7 (and WP10-11) will support prototypes

Novel magnet design and NEG coating studies


WP7 Task 7.3: Variable longitudinal gradient dipole for the ELETTRA upgrade (Y. Papaphilippou - CERN)

WP11 Task 11.4: sustainable concept and technologies permanent magnets based quadrupoles and combined function dipoles (B. Shepherd – STFC)

WP10 Task 10.5: advanced accelerator technologies test of NEG coating from vacuum chamber under synchrotron radiation (O. Malyshev – STFC)

Acknowledgments

