

with Ukraine

ARIES Network ADA on Beam Diagnostics WP8: Advanced Diagnostics at Accelerators 5th ARIES Annual Meeting, May 2nd to 3rd, 2022 Work-package leader: Peter Forck GSI Task 2: Diagnostics at hadron LINACs \rightarrow Peter Forck GSI Task 3: Diagnostics at hadron synchrotrons \rightarrow Rhodri Jones CERN Task 4: Diagnostics at circular light sources → Ubaldo Iriso ALBA-CELLS Task 5: Diagnostics at linear light sources → Kay Wittenburg DESY

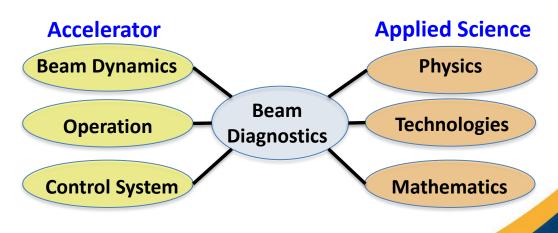
651

ARIES-ADA Network

ADA = Advanced Diagnostics for Accelerators was one Network Activity

- Goal: Initialize and strengthen knowledge transfer & collaboration between experts on various fields
- Methodology: Topic workshops on one dedicated subject & exchange of personnel
- Task structure: Hadron LINAC (GSI), Hadron synchrotrons (CERN)

Electron circular light source (ALBA), linear light source (DESY)


- Budget: 160 k€ plus administrative overhead shared by ALBA, CERN, DESY & GSI
- Covid-19: Interruption for face-to-face meetings & continuation as remote events; ended mid 2021

Requirements for beam diagnostics at novel accelerators:

- Design of adequate diagnostics for existing & novel accelerators
- Instruments are based on different physics and techniques

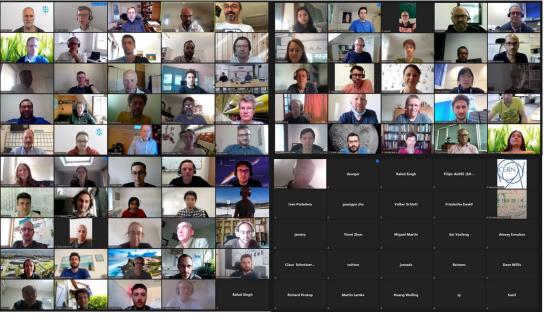
Workshop goal based on:

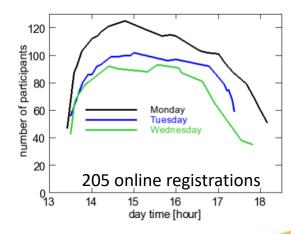
- Physicists, engineers, technicians from acc. labs, universities & industry
- Expertise from experts on other fields
- Documentation of state-of-the-art knowledge

ARIES-ADA Workshops

#	Date	Org. & location red: exclusive event	Title of workshop	# Part.	Task
1	22-24 May	GSI	Simulation, Design & Operation of Ionization Profile	33	2&3
	2017	Darmstadt	Monitors		
2	29-30 Jan.	ALBA & DESY	Emittance Measurements for Light Sources and FELs	37	4&5
	2018	Barcelona			
3	14-16 May	CERN & GSI	Extracting information from electro-magnetic monitors	32	3&4
	2018	Geneva	in Hadron Accelerators		
4	25-27 June	DESY & PSI	Longitudinal Diagnostics at FELs	45	5
	2018	Hamburg	(co-sponsoring)		
5	12-14 Nov.	ALBA & GSI	Next Generation Beam Position Acquisition and	84	3&4
&	2018	Barcelona	Feedback Systems		
6			Two in one event: hadron & electron acc.		
7	1-3 April	GSI & SOLARIS	Scintillation Screens and Optical Technology for	49	2,4
	2019	Krakow	transverse Profile Measurements		& 5
8	3-5 June	ALBA & ESRF	Diagnostics Experts of European Light Sources (DEELS 19)	33	4
	2019	Grenoble	(co-sponsoring)		
9	25-29 Jan.	CIEMAT & GSI	Experiences during Hadron LINAC Commissioning	239	2
	2021	Online			
10	21-23 June	CERN & GSI	Materials and Engineering for Particle Accelerator Beam	205	2, 3,
	2021	Online	Diagnostic Instruments		4&5
11	7-8 July	ALBA & SESAME	Diagnostics Experts of European Light Sources (DEELS 21)	49	4
	2021	Online	(co-sponsoring)		
<i>red</i> : organized only due to ARIES-ADA Documentation at <u>https://aries.web.cern.ch/wp8</u>					

ARIES P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022


Workshop on Materials and Engineering Technologies


Title: 'Materials and Engineering Technologies for Particle Accelerator Beam Instruments'

Originally planned in Oxford for March 2020, 3 days with 50 attendees and 32 talks Execution of remote workshop:

- Date: June 21st to 23rd, 2021 \geq
- 205 registered participants \geq 15 Americans, 20 Asian, 170 Europeans
- \approx 100 simultaneous attendees
- 3 half days at afternoon in Europe
- In total 22 talks, 25 min each
- No pre-recordings \geq to keep lively atmosphere
- Break-out rooms for discussion
- Documentation at

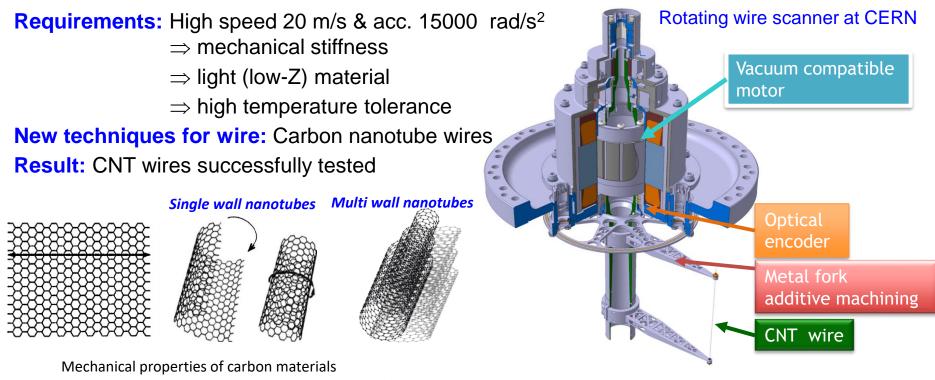
https://indico.cern.ch/event/1031708/

Summary talk by P. Forck at IBIC 2021

. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022

Workshop on Materials and Engineering Technologies

Title: 'Materials and Engineering Technologies for Particle Accelerator Beam Instruments' \rightarrow Novel applications for accelerator beam instrumentation


The aims of the Workshop are to review:

- Novel materials and application
- Innovative production methods
- Improved vacuum components
- Information concerning experiences
- Intensify collaborations institutes and industry

Participation of **engineers** (normally not attending conferences) and companies

Carbon Nanotubes for fast rotating Wire Scanner

Talk by William Andreazza and Alexandre Mariet on behalf of CERN

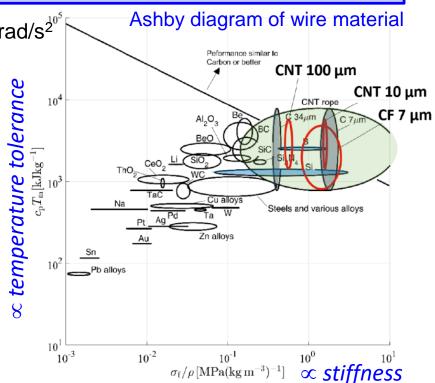
	Material		σ _{max} [GPa] Tensile strength	E [GPa] Young modulus	
	CNT (SWNT) ¹	0,02 - 4	up to 150	up to 1e3	
	Carbon fiber ²	1,7 - 2,5	0.6 - 4.5	60 - 500	
2	CNT wire ³	1.1 - 2.1	0.2 - 3.3	20 - 100	

P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022

'Ashby Diagram': Quantitative Selection Method for Wire Scanner

Talk by John Huber behalf of Engineering Dep. University Oxford and CERN

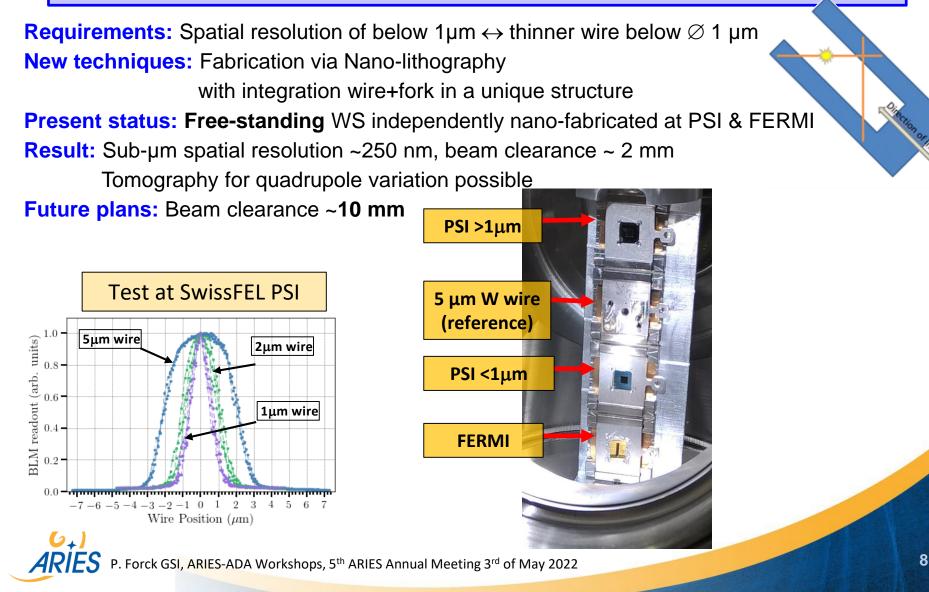
Requirements: High speed 20 m/s & acc. 15000 rad/s²⁰


- \Rightarrow mechanical stiffness
- \Rightarrow light (low-Z) material
- \Rightarrow high temperature tolerance

Quantitative selection method: Ashby diagram Result:

- Clear selection criteria
- CNT robes have superior performance
- Test of open topics performed
 e.g. stat. variation of breaking strength

Mechanical properties of carbon materials


Mate	erial		σ _{max} [GPa] Tensile strength	E [GPa] Young modulus
CNT (S	WNT) ¹	0,02 - 4	up to 150	up to 1e3
Carbo	n fiber ²	1,7 - 2,5	0.6 - 4.5	60 - 500
CNT w	ire ³	1.1 - 2.1	0.2 - 3.3	20 - 100

. Forck GS<mark>I, ARIES-AD</mark>A Workshops, 5th ARIES Annual Meeting 3rd of May 2022

Ultra-thin Wire for linear Wire Scanner

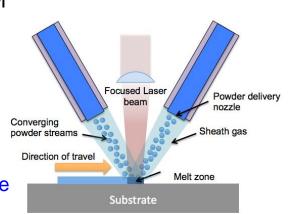
Talk by Gian Luca Orlandi on behalf of PSI, Elettra and IOM-CNR Trieste team

Adaptive Manufacturing: Example of fast Wire Scanner

Talk by Ana Miarnau on behalf of CERN

Adaptive Manufacturing: Manufacturing parts by adding layer upon layer of material Examples of methods for metals: DED & EBM Design of wire scanner fork:

- High stiffness in two planes and
- Low inertia
- Titanium alloy Ti-6Al-4V chosen Series of 56 forks produced in 3 batches


Metal fork

Results:

- Fully functional
- Vacuum outgassing comparable to traditional production

Example: Fork for wire scanner at CERN

Powder fed: Direct Energy Deposition Powder bed: Electron Beam Melting

P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022

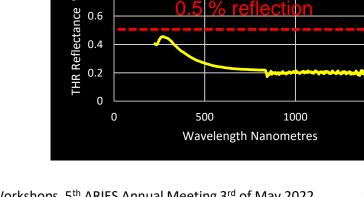
Carbon Nanotubes for Stray Light suppression by black Coating

Talk by Ben Jensen on behalf of company NanoSystem in collaboration with CERN

Example: Full hemispheric reflection

Vantablack S-VIS: UV-NIR THR

0.5 % reflection


Requirement: In-vacuum suppression of stray light for optical monitors

Method: Spray coating of carbon nanotubes Post processing by backing **Product:** 'Vantablack', several types available **Results:**

- Broadband (UV to NIR) reflection below 0.5 %
- Acceptable mechanical properties
- Low vacuum outgassing
- Radiation hard

Tests at CERN performed

Company background in space technology

1500

Production examples

1 ° © 0.8 %

Remote Workshop: Diagnostics Experts of Euro. Light Sources (DEELS) 2021

Practical details and statistics:

Organized by SESAME, Jordan including virtual tour


- Meeting time: 7th July, 2021, 10:00 to 17:00
- Registrations: total 49, most connected

Europa: 31 = 63 % | America: 2 = 5 % | Asia & Middle East: 15 = 31 % (SESAME member states)

9 talks followed by 10 min discussion

Topics:

- Overview on SESAME
- Synchrotron radiation monitors
 e.g. at EBS-ESRF for transverse &
 longitudinal beam characterization
- > X-ray BPMs for beam stabilization
- Machine Learning for image reconstruction

Remote Workshop on 'Experiences during Hadron LINAC Commissioning'

Workshop from 25th to 29th of January 2021 organized by CIEMAT (Madrid) and GSI

Planned for June 2020 as in-person event; however, postponed as remote with the aims:

- Common efforts by experts on instrumentation, beam dynamics and operation
- Review experiences from commissioning to early operation
- Review initially formulated requirements and final usage of instrumentation
- > Explore the balance between detailed measurements on a test bench and fast commissioning

Many proton and ion LINACs are presently realized worldwide

Remote Workshop on 'Experiences during Hadron LINAC Commissioning'

Workshop from 25th to 29th of January 2021 organized by CIEMAT (Madrid) and GSI

Planned for June 2020 as in-person event; however, postponed as remote with the aims:

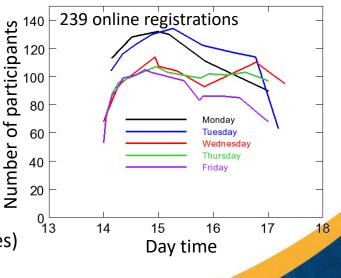
- > Common efforts by experts on instrumentation, beam dynamics and operation
- Review experiences from commissioning to early operation
- Review initially formulated requirements and final usage of instrumentation
- Explore the balance between detailed measurements on a test bench and fast commissioning

Many proton and ion LINACs are presently realized worldwide

Practical details and statistics:

Registrations: total 239

Europa: 154 = 70 % | Asia: 47 = 21 % | America: 19 = 9% Industry: 36 participants = 15 %


Meeting time: Monday to Friday from 14:00 to 17:15 CET
 2 x 3 talks + discussion per day

> Talks:

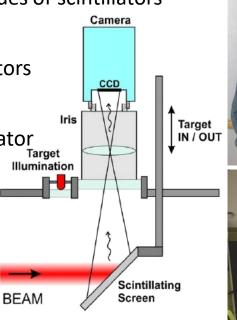
Europa: 18 = 60 % | Asia: 5 = 17 % | America: 7 = 23%

- About 100 people connected in parallel,
 many contribution to discussion (even on Friday 90 attendees)
- No pre-recorded talks to keep life atmosphere

P. Forck GS<mark>I, ARIES-ADA</mark> Workshops, 5th ARIES Annual Meeting 3rd of May 2022

Scintillation Screens and Optical Technology for transverse Profile Measurements

Workshop on 1st to 3rd of April 2019 in Krakow


see indico.cern.ch/event/765975/

49 participants (more applications but restriction de to venue)

incl. material research, laser acceleration, industry

- Physics and production techniques of scintillators
- Optics and cameras
- Experiences at hadron accelerators
 mainly radiation hardness
- Experiences at electron accelerator Ta
 - \rightarrow mainly resolution limits
- > 29 talks incl. 3 talks by industry

Screens: Simple set-up, but non-trivial physics

Industrial exhibition

Summary by B. Walasek-Höhne (GSI) as invited talk IBIC conference in September 2019

Forck GS<mark>I, ARIES-AD</mark>A Workshops, 5th ARIES Annual Meeting 3rd of May 2022

Workshop Scintillation Screens: Profile Measurement versus Detector Appl.

Difference to traditional applications in high energy physics, medical imaging &			
Parameter	Physics, Medical	Hadron acc.	Electron acc.
Application	Secondary part.	Primary beam transverse profile	
Particle rate	Low	High	Very high
Energy	Up to 10 GeV	10 keV100 GeV	100 keV10 GeV
Spot size	10100 mm	150 mm	0.011 mm
Spatial resolution	1 mm	100 µm	3 µm
Deposited dose	Low	Very high	Medium
Saturation	None	Expected	Possible
Radiation damage	Low	Very high	High

Accelerators:

- Some time same material used e.g. YAG:Ce for electron beams
- Different requirements e.g. ceramic Al 2O3:Cr ('Chromox ')
- \succ Challenge for electron accelerators: resolution down to 1 μ m
- Challenge for hadron accelerators: Radiation damage
- Both types: Prevention of possible saturation and quenching for correct beam image

Piscussion on experiences with experts in material science

ARIES P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022

Workshop on 'Next Generation Beam Position Acquisition and Feedback Systems'

Workshop on 12th to 14th of November 2018 in Barcelona see indico.cern.ch/event/743699/ Common event for hadron and electron synchrotron

84 participants

(strong Chinese participation)

Hadron community:

- Analog electronics
- Realization & trends for digital electronics

Common hadron & electron:

Closed orbit feedback

Electron community:

Fast feedback for instability cure

- Accuracy requirements for BPMs for ultra-low emittance circular light sources (e.g. 'pilot tone')
- Two talks by industry

Common session with hadron & electron accelerators well acknowledged

Remark: Discussion between engineers who seldom participate at conferences!

ES P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022

Workshop on 'Longitudinal Diagnostics for Free Electron Lasers'

Workshop on 25th - 27th of June 2018 at DESY see https://indico.cern.ch/event/702602/

45 participants

Meeting with experts in

- Detector development
- Optics
- Electronics

Topics:

- Compression monitors & THz detectors
- Electro-Optical diagnostics
- > THz Streak of the primary electron beam
- Laser heater operation and diagnostics
- KALYPSO and fast digitization electronics

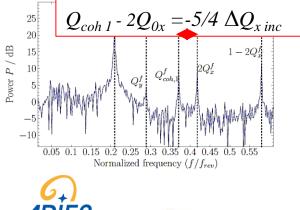
Working procedure:

1st day: Working group to five subjects → information about status, collaborations & experiments
 2nd and 3rd day: Report by working group coordinator, discussion and poster presentations

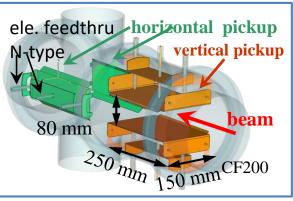
ARIES-Workshop 'Extracting Information from electro-magnetic Monitors'

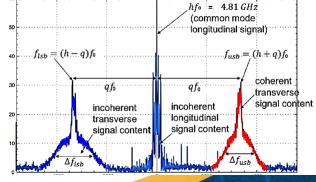
Workshop on 14th - 16th of May 2018 at CERN

see https://indico.cern.ch/event/705430


32 participants from CERN, France,

Germany, Japan, Switzerland, Russia, USA


- Measurements of machine optics
 e.g. tune and beta-beating
- ➢ Beam parameter measurements
 e.g. quadrupolar oscillation → tune spread
- Schottky signal analysis
- ightarrow 'beam dynamics meets diagnostics'

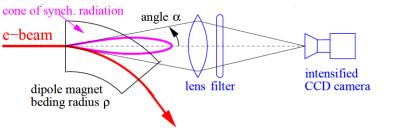

Tune & quadrupole oscil.

BPM

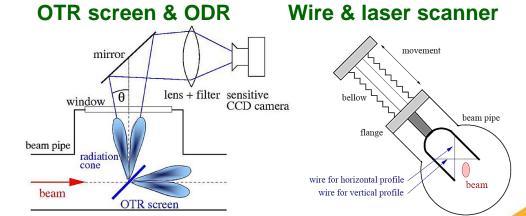
Schottky spectrum

P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022

ARIES-Workshop on 'Emittance Measurements for Light Sources and FELs'


Workshop on 29th - 30th of Jan. 2018 at ALBA

see https://indico.cells.es/indico/event/128/

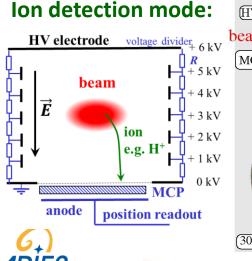

37 participants from CERN, France, Germany, India, Italy, Japan, Poland, Sweden, Spain, Switzerland, Russia, UK, USA

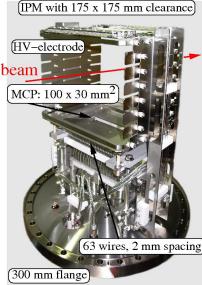
- Resolution challenges at light sources
- Direct images technique
- Measurements from light coherence analysis
- FEL challenges and OTR & ODR techniques
- Wire and laser scanner techniques

Synch. light monitor visible x-ray

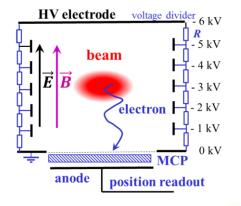
Unique result: Table with detailed comparison of resolution of all methods

Invited Talk at IBIC 2018 by Ubaldo Iriso (ALBA), Shanghai September 2018 ARIES P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022


ARIES-Workshop on 'Simulation, Design & Operation of Ionization Profile Monitors'


Workshop on 22nd - 24th of May 2017 at GSI see http://indico.gsi.de/event/5366/

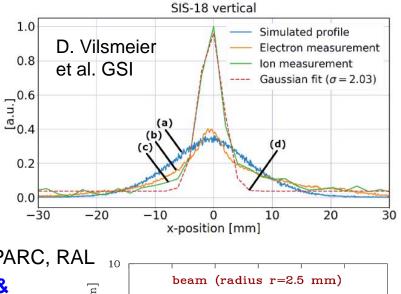
33 participants from Austria, CERN, China, France, Germany, Japan, Russia, UK, USA

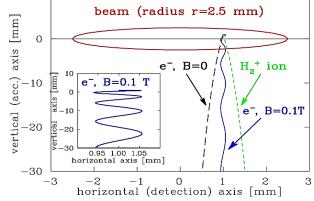

- General compilation on IPM realization at LINACs and synchrotrons
- Exchange of novel ideas
- Common code development for image reconstruction

Electron detection mode:

P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022

ARIES-Workshop on 'Simulation, Design & Operation of Ionization Profile Monitors'


Topic 4: Code for space charge broadening by beam's space charge


Each laboratory has its own code with special application & restriction

- ⇒ Discussion underlying physics & software, validation as initialized by m. Sapinski GSI Code includes:
- Application for LINACs
 i.e. short bunches, non-relativistic
- Application for synchrotrons
 i.e. long bunches, relativistic => 2d calc.
- > Homogeneous $\vec{E} \& \vec{B}$ fields **or** input CST maps
- > Realistic e⁻ generation: $\frac{d^2\sigma}{dE_1d\theta}$ and tracking
- Meaningful GUI
- twiki.cern.ch/twiki/bin/view/IPMSim/

Present participants: CEA, CERN, ESS, FNAL, GSI, J-PARC, RAL

→ Developed towards 'standard' code for simulation & related machine-learning corrections

Assessment for ARIES-ADA

Mission accomplished for ARIES-ADA in 2017 to 2021:

- Workshops related to one special subject acts as an addition to conferences
- Inclusion of engineers & PhD-students is a central pillar for tech. realization & knowledge transfer
- Focused talks on achievement & failures (you can gain for others: '...don't do a mistake twice...')
- Large interest within the community:
- Well appreciated by the beam diagnostics community: 4 summary talks at IBIC conference
- Durable documentation of state-of-the-art beam instrumentation and diagnostics

Experience and organizational view to ARIES-ADA:

- \succ There are many things to learn from other labs' experiences \Rightarrow very valuable workshops
- \blacktriangleright Must be an **actual** topic \Rightarrow interest by many people to achieve 'critical mass'
- > Pleasure atmosphere & small talks (e.g. **one** hotel to keep people together) are essential for collaborations
- Advantage: Financial budget (in total 160 k€) to cover part of the travel costs
- In-person meeting are required to establish collaborations

Conclusion: ARIES-ADA contributed significantly to accelerator R&D

The support by EU-Project ARIES is greatly acknowledged! Thank you very much to ARIES team at CERN! Thank you for your attention!

P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022

ARIES-Workshop on 'Emittance Measurements for Light Sources and FELs'

Comparison of different methods of synchrotron light monitors (visible or x-ray) \Rightarrow Different techniques for <u>circular</u> SLS compared, technical realization discussed,

Method for <u>circular</u> accelerator	smallest σ [μm] (measured)	Workshop Talk
Scintillator (reference)	1.5	G. Kube (DESY)
X-ray Pinhole	7	L. Bobb (DLS)/ F. Ewald (ESRF)
Comp. Refractive Lenses	10	F. Ewald (ESRF)/ A. Snigirev (Kalin.)
Vis. Light Interf.	3.9	T. Mitsuhashi (KEK)
Vis. Light Inter. (mask)	2 (sim)	L. Torino (ESRF)
p-polarization (vis)	3.7	A. Andersson (MAXLab)
Coded Aperture	5	J. Flanagan (KEK)
In-air X-ray Det.	9	F. Ewald (ESRF)
X-ray Diffraction	4.8	A. Snigirev (Kaliningrad)
X-ray (multi/lens) Inter.	4.8	A. Snigirev (Kaliningrad)
HNFS (near-field speckles)	pprox 10 (development)	M. Siano (Milan)

ARIES P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022

ARIES-Workshop on 'Emittance Measurements for Light Sources and FELs'

Comparison of different methods (invasive optical methods, wire & laser scanner) \Rightarrow Different techniques for <u>linear</u> FELs compared, technical realization discussed

Method for <u>linear</u> accelerator	smallest σ [μm] (measured)	Workshop Talk
Scintillator (reference)	1.5	G. Kube (DESY)
OTR Techniques	1.5	L. Sukhikh (Tomsk)
ODRI Techniques	??	E. Chiadroni (INFN)
COTR Techniques	3.8	A. Potylitsyn (Tomsk)
Wire Scanner Technique	0.490	K. Wittenburg (DESY) / S. Borrelli (PSI)
Laser Wire Technique	0.070	P. Karataev (RHUL)
Multi-Slit Mask Technique	200	M. Kraskilnikov (DESY)

Recent improvements for Au-wires (strips from membrane) down to \oslash 1 μ m

4RIES P. Forck GSI, ARIES-ADA Workshops, 5th ARIES Annual Meeting 3rd of May 2022

6.