

Overview of ARIES experiments at HiRadMat

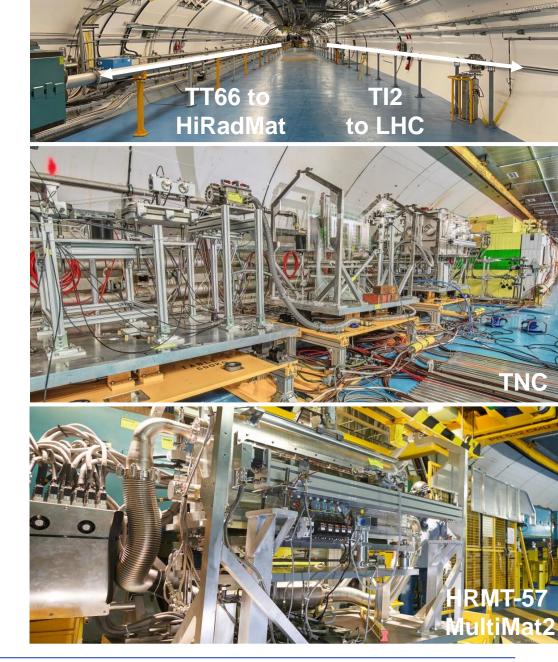
P. Simon, N. Charitonidis, A. Ebn Rahmoun on behalf of the HiRadMat Users 6th December 2021

HiRadMat Facility

Short-pulse high-energy proton irradiation facility

Not to accumulate high doses, but to investigate pulsed beam effects

• LHC-like beam structure:


1.5 ns bunch length (4 σ)

25 ns bunch spacing

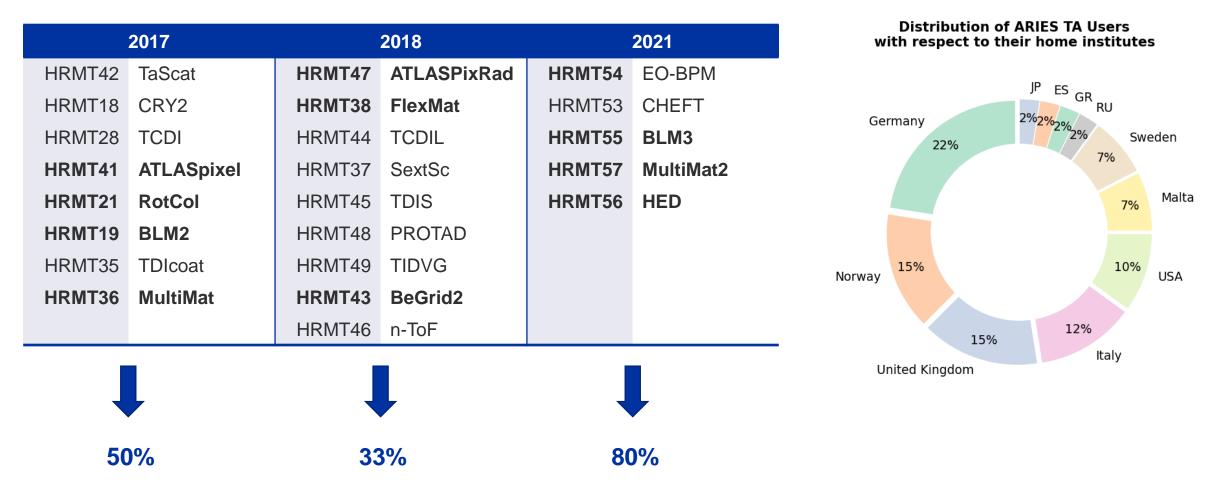
Up to 288 bunches with up to 1.2-10¹¹ protons per bunch

3.4-10¹³ protons per pulse at 440 GeV/c (2.4 MJ)

Variable beam size at target: **<1 mm** (1 σ)

HiRadMat Facility

Designed for maximum flexibility


- Assembly, alignment and dry-running at the surface in BA7 in supervised RP area
- Target Area with remote plug'n'play connectivity
 More than 300 signal connections per experiment
- Pulse-to-pulse beam diagnostics
 Allows grazing incident impacts with <100 µm precision
- Shielded locations in auxiliary tunnel and upstream 'bunker'

High speed cameras, laser diagnostics, short cabling length

HiRadMat Experiments during ARIES

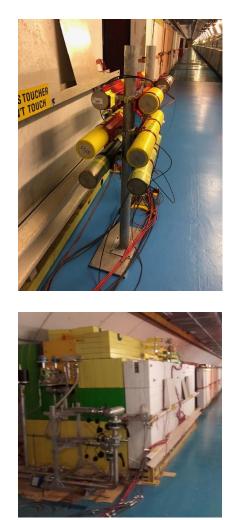
~50% of all experiments supported by ARIES-TA!

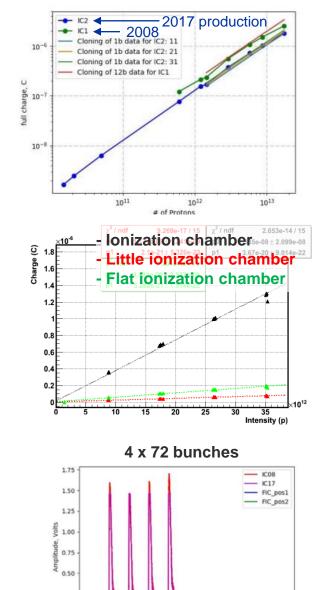
(Additionally, one experiment supported during preparation)

CÈRN

HRMT19 BLM2, HRMT55 BLM3 ESS

- Validate and calibrate various beam loss monitors (BLMs) under real beam conditions
 - New series production of ionization chamber BLMs
 - R&D on 'little ionization chamber' for injection regions of (HL-)LHC
- Critical infrastructure for beam diagnostics at CERN, ESS and GSI
 - Close to a thousand BLMs in the LHC alone


"After LS3, literally every 10 meters in the whole accelerator complex, from LINAC4 to LHC, there will be a bright yellow tube."


03/05/22

• On-going measurement campaign in 2022

HiRadMat

High-Radiation to Materials

0.25

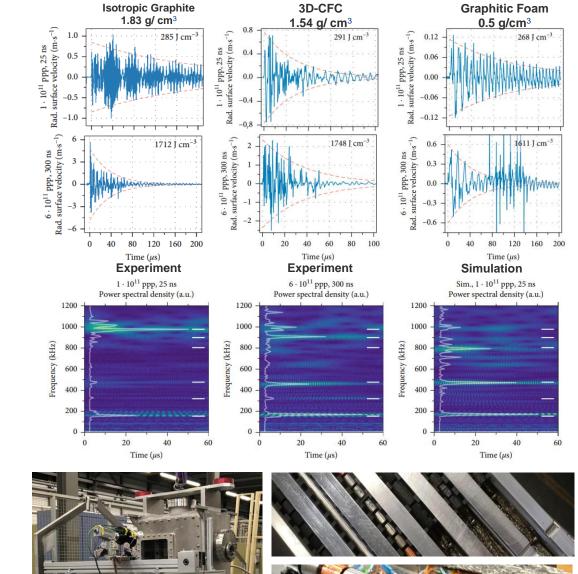
0.00 0.25 0.50 0.75 1.00 1.25

Time, s

V. Grishin et al. 2017 Proc. 6th Int. Beam. Instrumentation Conf. (IBIC'17) 454-57 V. Grishin et al. 2018 Proc. 26th Russian Particle Accelerator Conf. (RuPAC'18) 44-48.

HRMT38 FlexMat GSI/FAIR

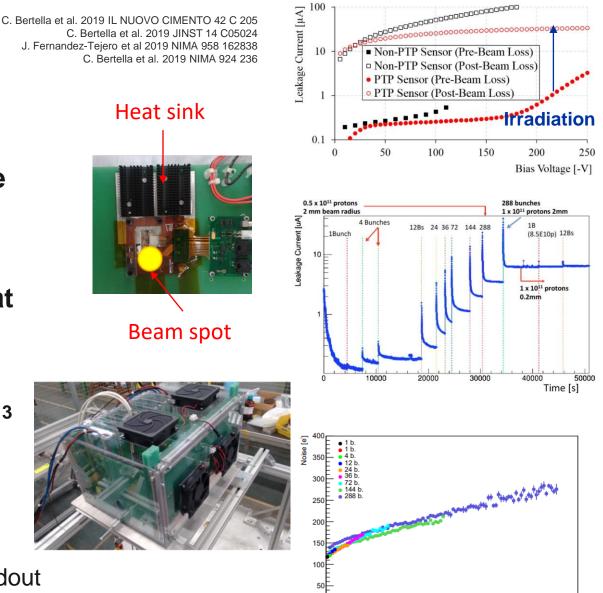
- Test dynamic response of graphitic materials for beam-intercepting devices
 - Large density range: 0.5 2.2 g/cm³
 - 35 samples of 12 different grades
- Systematically investigate influence of:
 - Micro-structure, porosity, pyrolization treatment
 - Degree of graphitization
 - Anisotropy


Benchmark for advanced numerical simulations

03/05/22

- R&D on FAIR p-bar target material:
 - 10 samples of Invar, Inconel, Copper
 - p-bar mock-up target

HiRadMat


High-Radiation to Materials

HRMT41/47 ATLASPixRad INFN Genova

- Investigate detector degradation and damage limit of new generation of pixel modules
 - Innermost layer (IBL) of the ATLAS Pixel detector
- Direct irradiation of pixel and strip modules at HiRadMat
 - Simulate beam loss conditions expected at HL-LHC
- Experiment established a damage limit of 10¹³ MIPs/cm²
 - Old generation: 10¹⁰ MIPs/cm²
- Punch trough protection (PTP) effective
 - 99% survival vs. 40% strip survival, but damaged readout electronics

HRMT21 RotColl SLAC, University of Malta

- Rotatable collimator prototype by SLAC
 - US-LARP collaboration
 - Offers up to 20 collimating surfaces in case of beam damage
- Validation of the rotation mechanism and integrity of cooling circuit during the design failure scenario
 - LHC asynchronous beam dump: 8 bunches @ 7 TeV
- Investigate damage onset beyond design case
 - LHC injection error: 288 bunches @ 450 GeV
- Fully validated design concept together with installation in the SPS
 - Damage onset at 24 bunches
 - Rotation mechanism and cooling circuit robust

T. Markiewicz et al. 2019 PRAB 22 123002

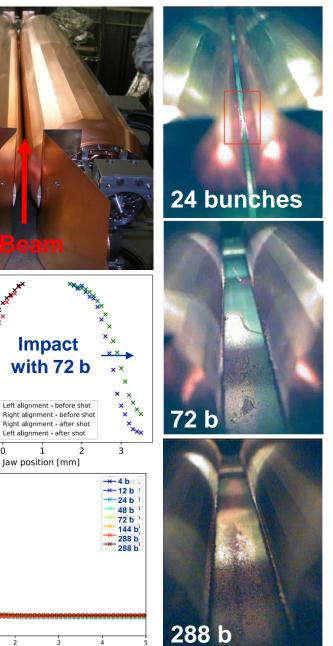
units]

loss [arb. u 9.0

bea

0.4

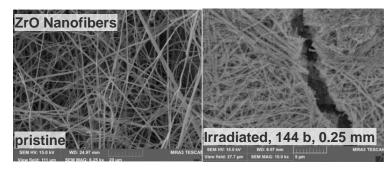
0.25

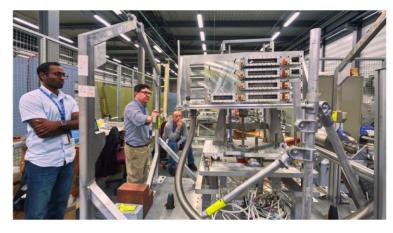

g 0.20

0.15

≥ 0.10

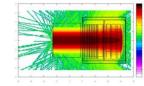

0.2

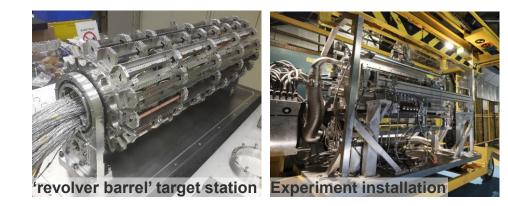


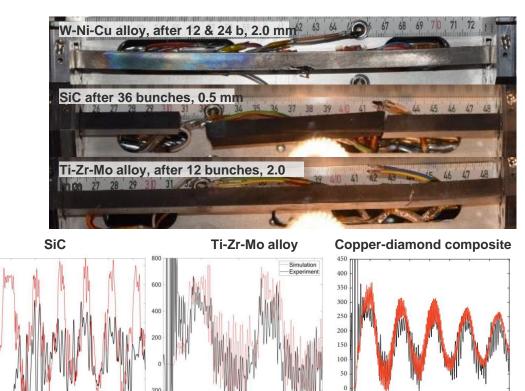


HRMT43 BeGrid2 RaDIATE Collaboration

- First test ever at HiRadMat with pre-irradiated samples
 - 25 pre-irradiated material specimen from BNL BLIP (out of 89 in total)
 - Relevant for high power targetry applications
 - Complex coordination between BNL, FNAL, PNNL and CERN to handle and assemble highly radioactive samples
- Goal to identify differences in thermal shock response
 - Benchmark highly non-linear numerical simulations
- Ambitious post-irradiation characterization campaign
 - Hot cell measurements at Culham Centre for Fusion Energy, UK
- Follow-up experiment in 2022




S. Bidhar et al. 2021 PRAB 24 123001 J. Heredia et al. 2021 IPAC2021 3571-3574 Courtesy K. Ammigan, FNAL



HRMT36 MultiMat U. Malta, Brevetti-Bizz SME Italy

- Investigate dynamic response of novel materials for HL-LHC collimator upgrade
 - 16 target stations with 18 different materials ranging from ultra light C foams to heavy W alloys
 - MoGr, CFC and graphite coated with Mo, Cu, TiN
 - To derive & extend constitutive models and material properties as input for numerical simulations
- Conditions exceeding maximum energy deposition density of LHC injection error
- Re-usable multi-purpose testbench

M. Pasquali et al. 2019 Journal of Dynamic Behavior of Materials 5 266 M. Portelli et al. 2019 Mechanics of Materials 138 103169 M. Portelli et al. 2021 Shock and Vibration, vol. 2021, 8879400

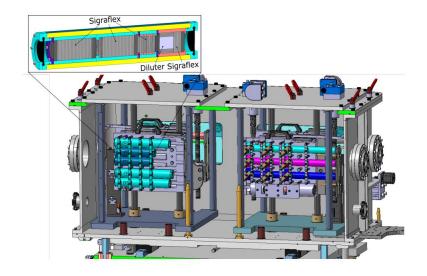
F. Carra et al. 2017 Proceedings IPAC17 MOPAB005 A Bertarelli et al. 2018 J. Phys.: Conf. Ser. 1067 082021 F. Carra et al. 2019 J. Phys.: Conf. Ser. 1350 012083

300

150 200

2021 Experiments

HRMT57 – MultiMat2 Sapienza University


Validation of industrial grades and coatings for HL-LHC collimator series production

J. Guardia "Results on HRM incl. status of CuCD" 11th HL-LHC Collaboration Meeting, 19-22 Oct 2021 https://indico.cern.ch/event/1079026/

HRMT56 – HED SINTEF, NTNU, U. Granada

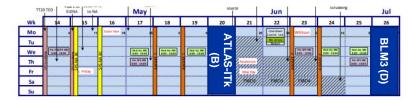
Performance assessment of graphite materials for the (HL-)LHC beam dump

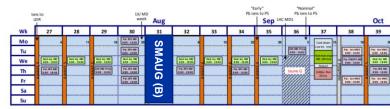
J. Heredia et al. 2021 IPAC2021 3571-3574

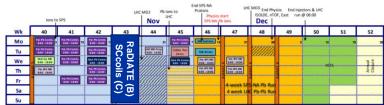
HiRadMat future after ARIES

- 2022: 4 slots with 5 experiments (3 external)
- 2023: 3 experiments in the pipeline (2 external)

HiRadMat Upgrade Study Group


Multiple experiment proposals calling for LIU beams already!


EURO-LABS


Transnational access support starting September 2022

	Experiment	Context	РОТ	Max. Pulse Intensity	Beam Time (tentative)
HRMT58	ATLAS-Itk Jožef Stefan Inst., SI	Detector	2.9 x 10 ¹⁵	288 x 1.2·10 ¹¹	2022
HRMT55	BLM3 ESS, SE	Beam Instrumentation	0.9 x 10 ¹⁵	288 x 1.2·10 ¹¹	2022
HRMT59	SMAUG CERN / TE-VSC	Beam Intercepting Devices	2.6 x 10 ¹⁵	288 x 1.2·10 ¹¹	2022
HRMT60	RaDIATE2022 FNAL, US	Targetry	0.2 x 10 ¹⁵	288 x 1.2·10 ¹¹	2022
HRMT61	SCcoils CERN / TE-MPE	Machine Protection	<0.1 x 10 ¹⁵	24 x 1.2·10 ¹¹	2022
p-2003	CRY3 UA9 Coll.	Beam Intercepting Devices	0.2 x 10 ¹⁵	288 x 1.2·10 ¹¹	2023
p-2005	DPA J-PARC, JP	Materials Science	0.2 x 10 ¹⁵	24 x 1.2·10 ¹¹	2023
p-2101	FIREBALL Uni. of Oxford, UK	Plasma Physics	<0.1 x 10 ¹⁵	1 x 3·10 ¹¹	2023
p-2001-4	ScintOF CERN / BE-BI	Beam Instrumentation			2023?
	10156442 101564-0051	Seam merceding territes			100means
		Server Serversen Desser			1000-000000
	Management .	Maria Ma			Littlebestors

List of HiRadMat publications and references:

https://cern.ch/hiradmat

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no 730871

