Muon g - 2 — physics beyond the SM at an e^+e^- collider

Dominik Stöckinger, TU Dresden

Seminar series on physics potential of e+e- Higgs/Top/EW factories, 4th March 2022

Collaborators: Peter Athron, Csaba Balasz, Douglas Jacob, Wojciech Kotlarski, Hyejung Stöckinger-Kim

 e^+e^- -collider

Overview and SM theory

- 2 g 2 and BSM important general remarks
 - 3 Examples part 1
 - 4 Examples of chirality-flip enhanced models
 - 5 General lessons and conclusions

Outline

① Overview and SM theory

- 2 g 2 and BSM important general remarks
 - 3 Examples part 1
 - 4 Examples of chirality-flip enhanced models
 - 5 General lessons and conclusions

Finally: Fermilab Run 1 versus Theory Initiative SM value

2006: BNL experiment

2013: moved ring to Fermilab

2021: first results

Muon magnetic moment: definition of $g = 2(1 + a_{\mu})$

$$H_{\rm magnetic} = -g \frac{e}{2m_{\mu}} \vec{B} \cdot \vec{S}$$

$$\rightarrow$$
 measure $\omega_a = \omega_s - \omega_c = -a_\mu \frac{e}{m_\mu} B$

- (I) (I

Muon magnetic moment: definition of $g = 2(1 + a_{\mu})$

$$H_{\text{magnetic}} = -g \frac{e}{2m_{\mu}} \vec{B} \cdot \vec{S}$$

g = 2 is special for measurement.

g=1 is the result for classical charge/mass distributions.

What is g for a relativistic quantum particle???

Dominik Stöckinger

Computation in QFT, Chirality flips and muon mass

$$\mathcal{L}_{m} = -m \,\overline{\psi}_{L} \psi_{R} + h.c.$$
$$\mathcal{L}_{eff} = \frac{Qe}{2} c^{*} \overline{\psi}_{L} \sigma_{\mu\nu} \psi_{R} F^{\mu\nu} + h.c.$$
$$a_{\mu} = -2m_{\mu} \text{Re}(c) \quad d_{\mu} = Qe \,\text{Im}(c)$$

Computation in QFT, Chirality flips and muon mass

- break "chiral" symmetry $\psi_R \rightarrow e^{i\alpha_R}\psi_R$
- break EW gauge invariance (cmp. $\bar{L}\sigma_{\mu\nu}\mu_R F^{\mu\nu}\langle H \rangle$)

Computation in QFT, Chirality flips and muon mass

- break "chiral" symmetry $\psi_R \rightarrow e^{i\alpha_R}\psi_R$
- break EW gauge invariance (cmp. $\bar{L}\sigma_{\mu\nu}\mu_R F^{\mu\nu}\langle H \rangle$)

 $a_{\mu} \sim m_{\mu} \times (\text{some VEV}) \times (\psi_{L\leftrightarrow R}\text{-flipping param.}) \times \frac{(\text{other couplings})}{M_{\text{typical}}^2}$ $m_{\mu}(\text{SM}) \sim (\text{SM Higgs-VEV}) \times (\text{muon Yukawa coupling})$

Dominik Stöckinger

Standard Model of particle physics (est. 1967...1973))

SM very well confirmed!

- relativistic QFT
- gauge invariance
- spontaneous EWSB

a_{μ} sensitive to all particles and forces via quantum fluctuations!

Open questions require Beyond the Standard Model (BSM) physics

Open questions!

- need experiments!
- g 2 ... LHC
- e^+e^- collider

Open questions require Beyond the Standard Model (BSM) physics

Open questions!

- need experiments!
- g 2 ... LHC
- e^+e^- collider

 μ couples to ${\it B}\mbox{-field}$ directly or via virtual particles

 μ couples to ${\it B}\mbox{-field}$ directly or via virtual particles

 μ couples to B-field directly or via virtual particles

Dirac equation/direct ~~"pointlike"

$$g = 2$$

Quarks

$$U C t$$

 $J S D$
Forces
 $Z \gamma$
 $W g$
 E
Leptons

Schwinger (1948): quantum fluctuations ~> "non-pointlike"

$$g = 2\left(1 + rac{lpha}{2\pi}
ight)$$

 μ couples to B-field directly or via virtual particles

Dirac equation/direct ~~" pointlike"

$$g = 2$$

 μ

Schwinger (1948): quantum fluctuations ~> "non-pointlike"

$$g = 2\left(1 + rac{lpha}{2\pi} + \sim rac{lpha}{2\pi}rac{m_{\mu}^2}{M_Z^2}
ight)$$

Dominik Stöckinger

 μ couples to B-field directly or via virtual particles

Dirac equation/direct ~~"pointlike"

$$g = 2$$

Quarks

$$U C t$$

 $J S D$
 E
 $Z \gamma$
 $W g$
 $U g$
 $U C t$
 $U C$

Schwinger (1948): quantum fluctuations \rightsquigarrow "non-pointlike"

$$g = 2\left(1 + \frac{\alpha}{2\pi} + \sim \frac{\alpha}{2\pi} \frac{m_{\mu}^2}{M_Z^2}\right)$$

All SM particles contribute, even Higgs and top!

$$g = 2\left(1 + \ldots - 1.5 \times 10^{-11}\right)$$

Dominik Stöckinger

~~< \} z

Finally: Fermilab Run 1 versus Theory Initiative SM value

⊒ >

Outline

Overview and SM theory

2 g - 2 and BSM — important general remarks

3 Examples part 1

- 4 Examples of chirality-flip enhanced models
- 5 General lessons and conclusions

Discrepancy

SM prediction too low by $\approx (25\pm 6)\times 10^{-10}$

A B > A B >

Discrepancy

SM prediction too low by $\approx (25\pm6)\times 10^{-10}$

Question: Which models can(not) explain it?

• Can such models be investigated at an e^+e^- collider?

Two important general points

Two important general points

Central formula

$$a_{\mu} \sim m_{\mu} \times \underbrace{(\text{some VEV}) \times (\mu_{L\leftrightarrow R}\text{-flipping param.})}_{\text{related to muon mass generation, potential enhancement!}} \times \frac{(\text{other couplings})}{M_{\text{typical}}^2}$$
$$\mu_{\iota}(\text{SM}) \sim (\text{SM Higgs-VEV}) \times (\text{muon Yukawa coupling})$$

Dominik Stöckinger

 m_{l}

g-2 and BSM — important general remarks

≣ ৩৭ে 12/23

・ロン ・回と ・ヨン ・ ヨン

1

Outline

Overview and SM theory

2 g - 2 and BSM — important general remarks

3 Examples part 1

- 4 Examples of chirality-flip enhanced models
- 5 General lessons and conclusions

Two obvious promising directions for BSM physics

(日) (同) (三) (三)

- 一司

글 > - (글 >

Dark Matter, dark sectors? Hard to see in detectors but could couple to muon $\rightsquigarrow g - 2!$

A B > A B >

Dark Matter, dark sectors? Hard to see in detectors but could couple to muon $\rightsquigarrow g - 2!$

• Can do systematic model studies

- Generic model study: certain quantum numbers viable
- But simple 2-field models cannot describe DM and a_μ simultaneously!

[Athron, Balazs, Jacob, Kotlarski, DS, Stöckinger-Kim, 2104.03691]

Dark Matter, dark sectors and g - 2

Viable: 10 . . . 100 MeV [Amaral, Cerdeno, Cheek, Foldenauer'21]

 a_{μ} from Z' models, e.g. $L_{\mu} - L_{\tau}$ quantum number

(日) (同) (三) (三)

Dark Matter, dark sectors and g-2

Viable: 10 . . . 100 MeV [Amaral, Cerdeno, Cheek, Foldenauer'21]

a_{μ} from 2-field model L

• no chiral enhancement (like SM)

need large couplings and small masses

• Generic
$$e^+e^-$$
 processes:

$$e^+e^-
ightarrow \mu^+\mu^-
ightarrow \mu^+\phi\psi_d$$
, $e^+e^-
ightarrow \psi_d\psi_d$

and box-contributions to $e^+e^- \rightarrow \mu^+\mu^-$ [Freitas,Lykken,Kell,Westhoff'14]

Dark Matter, dark sectors and g-2

Viable: 10 . . . 100 MeV [Amaral, Cerdeno, Cheek, Foldenauer'21]

a_{μ} from 2-field model L

- Can do systematic analysis of models with 1, 2, ... new fields
- General result: a_{μ} and DM require at least three new fields! see also: [Arcadi,Calibbi,Fedele,Mescia] on B-physics

・ロト ・同ト ・ヨト ・ヨト

Dark Matter, dark sectors and g-2

Viable: 10 . . . 100 MeV [Amaral, Cerdeno, Cheek, Foldenauer'21]

Conclusions on dark matter/dark sectors:

- Not trivial to accommodate a_{μ} and dark matter simultaneously
- But dark sector contributions generally motivated/promising
- Interesting mass range $M_{Z'} \sim 10$ MeV... $M_{\phi} \sim 200$ GeV

・ロト ・同ト ・ヨト ・ヨト

Window to the muon mass generation mechanism (Higgs/Yukawa sectors)

(continuous spin rotation requires rest mass!)

Outline

Overview and SM theory

- 2 g 2 and BSM important general remarks
 - 3 Examples part 1

Examples of chirality-flip enhanced models

5 General lessons and conclusions

Aligned 2-Higgs doublet model, rich new Higgs/Yukawa sectors

Details on Yukawa couplings:

Type X/lepton-specific: $Y_{\ell} \propto \tan \beta$ Type II: $Y_{\ell,d} \propto \tan \beta$ Aligned: $Y_{\ell} \propto \zeta_{\ell}$

Dominik Stöckinger

• Aligned 2-Higgs doublet model, rich new Higgs/Yukawa sectors

Dominik Stöckinger

• Aligned 2-Higgs doublet model, rich new Higgs/Yukawa sectors

- can explain g 2 (but not in type I, type II)
- need large new Yukawa couplings, light pseudoscalar $M_A \sim 20 \dots 100$ GeV
- under pressure, testable at LHC, lepton colliders, B-physics, e⁺e⁻ collider

Dominik Stöckinger

Aligned 2-Higgs doublet model, rich new Higgs/Yukawa sectors

- e⁺e⁻ collider tests: possible at 250 GeV collider Chun, Mondal '19
- 2000 fb⁻¹ can explore entire g 2 parameter space of type X

• "Yukawa process"
$$e^+e^- \rightarrow \tau\tau A \rightarrow 4\tau$$

Dominik Stöckinger

$$a_{\mu}^{
m SUSY} pprox 25 imes 10^{-10} \ rac{ an eta}{50} \ rac{\mu}{M_{
m SUSY}} \left(rac{500 {
m GeV}}{M_{
m SUSY}}
ight)^2$$

 $m_{L,R} = M_1 + 50 \text{ GeV}, M_2 = 1200 \text{ GeV}, \tan\beta = 40$

• "Dark matter mass" versus
$$\mu$$

- explains g − 2 in large region (expands for tan β ≠ 40)
- DM explained by stau/slepton-coannihilation

 $m_{L,R} = M_1 + 50 \text{ GeV}, M_2 = 1200 \text{ GeV}, \tan\beta = 40$

 $a_{\mu}^{\rm SUSY} pprox 25 imes 10^{-10} \ rac{\tan eta}{50} \ rac{\mu}{M_{
m SUSY}} \left(rac{500 {
m GeV}}{M_{
m SUSY}}
ight)^2$

• "Dark matter mass" versus
$$\mu$$

- explains g − 2 in large region (expands for tan β ≠ 40)
- DM explained by stau/slepton-coannihilation
- this automatically evades (current) LHC limits

 $a_{\mu}^{
m SUSY} pprox 25 imes 10^{-10} \ rac{ an eta}{50} \ rac{\mu}{M_{
m SUSY}} \left(rac{500 {
m GeV}}{M_{
m SUSY}}
ight)^2$

 $m_{L,R} = M_1 + 50 \text{ GeV}, M_2 = 1200 \text{ GeV}, \tan\beta = 40$

- Strong LHC limits on M₂
- DM also explained by Wino-coannihilation
- again evades (current) LHC limits

 $a_{\mu}^{
m SUSY} pprox 25 imes 10^{-10} \ rac{ an eta}{50} \ rac{\mu}{M_{
m SUSY}} \left(rac{500 {
m GeV}}{M_{
m SUSY}}
ight)^2$

 $m_{L,R} = M_1 + 25 \text{ GeV}, M_1 = 250 \text{ GeV}, \tan\beta = 40$

$$B_{\mu}^{
m SUSY} pprox 25 imes 10^{-10} \ rac{ aneta}{50} \ rac{\mu}{M_{
m SUSY}} \left(rac{500 {
m GeV}}{M_{
m SUSY}}
ight)^2$$

- Also Higgsino/Wino-LSP very promising
- Similar analyses: [Chakraborti,Heinemeyer,Saha'20/21], [Endo,Hamaguchi,Iwamoto,Kitahara'20/21]
- e⁺e⁻ collider tests:
 [Chakraborti,Heinemeyer,Saha'21]
- partly accessible at 350 GeV
- $\bullet ~\approx {\rm full~coverage~at~1000~GeV}$

- Also Higgsino/Wino-LSP very promising
- Similar analyses: [Chakraborti,Heinemeyer,Saha'20/21], [Endo,Hamaguchi,Iwamoto,Kitahara'20/21]
- e⁺e⁻ collider tests: [Chakraborti,Heinemeyer,Saha'21]
- partly accessible at 350 GeV
- $\bullet ~\approx {\rm full~coverage~at~1000~GeV}$

Leptoquarks: promising; vector-like leptons: similar

[Athron,Balazs,Jacob,Kotlarski,DS,Stöckinger-Kim, 2104.03691]

$$\label{eq:relation} \begin{split} \bar{\lambda} = 0.5, \lambda = 0, M_E = 250, \lambda_E = 0.03 \ M_E / v, \lambda_L = 0.04 \ M_L / v \end{split}$$

[Dermisek,Raval 2013, no LHC constraints here!]

э

Leptoquarks: promising; vector-like leptons: similar

[Athron, Balazs, Jacob, Kotlarski, DS, Stöckinger-Kim, 2104.03691]

a_{μ} from LQ (or VLL) $\mathcal{L}_{S_1} = -\left(\lambda_{QL}Q_3 \cdot L_2S_1 + \lambda_{t\mu}t\mu S_1^*\right)$

- Chiral enhancement $\sim y_{top}, y_{VLL}$ versus y_{μ}
- Specific LQ that works:

- LHC: lower mass limits
- Flavour constraints → assume only couplings to muons
- Viable window above LHC (without m_{μ} -finetuning)

Window to the muon mass generation mechanism (Higgs/Yukawa sectors)

(continuous spin rotation requires rest mass!)

Conclusions for chirality-flip enhanced models

- Origin of EWSB/Higgs? of fermion masses? generations?
- Important for e⁺e⁻ colliders!
- g 2 and e^+e^- colliders can constrain scenarios
- of interest: SUSY, 2HDM, vectorlike leptons, leptoquarks, ...
- mass range $M_A \sim 20 \text{ GeV} \dots M_{LQ} \sim 2 \text{ TeV}$

Upper mass limit around 2 TeV

 $m_{\mu}(SM) \sim (SM \text{ Higgs-VEV}) \times (\text{muon Yukawa coupling})$

Without chirality-flip enhancement, $\{\ldots\} = m_{\mu}(SM)$ and a_{μ} can only be explained for $M_{\text{typical}} \lesssim 200 \text{ GeV}$. $\rightsquigarrow e^+e^- \rightarrow \mu^+\mu^- \rightarrow \mu^+\phi\psi$

Upper mass limit around 2 TeV

$$\begin{array}{l} \mathbf{a}_{\mu} \sim m_{\mu} \times \underbrace{(\text{some VEV}) \times (\mu_{L \leftrightarrow R}\text{-flipping param.})}_{\text{related to muon mass generation, potential enhancement!}} \times \underbrace{(\text{other couplings})}{M_{\text{typical}}^2} \\ \Delta m_{\mu}^{\text{BSM}} \sim (\text{some VEV}) \times (\mu_{L \leftrightarrow R}\text{-flipping param.}) \times (\text{other couplings}) \end{array}$$

In models where

$$\Delta m_{\mu}^{\mathsf{BSM}} \lesssim m_{\mu}$$

we have an upper limit on possible a_{μ} contributions and therefore, the current a_{μ} result can only be explained for

$$M_{
m typical} \lesssim 2.1\,{
m TeV}$$

This is true in all considered examples.

Dominik Stöckinger

Outline

Overview and SM theory

- 2 g 2 and BSM important general remarks
 - 3 Examples part 1
 - 4 Examples of chirality-flip enhanced models
- 5 General lessons and conclusions

e^+e^- Processes

Light, neutral: Z', A^0 with $M \sim 0.01 \dots 100$ GeV

$$e^+e^- \rightarrow \tau \tau A \rightarrow 4\tau$$

Two new particles ϕ, ψ (at least one charged, say ψ)

$$e^+e^- o \mu\mu o \mu\phi\psi$$

 $e^+e^- \rightarrow \psi\psi$

If ϕ,ψ also couple to electrons: box-contributions to

$$e^+e^-
ightarrow \mu\mu$$

Chirality-flip enhanced models (SUSY, LQ, VLL) contain such ϕ, ψ with $M \sim 200 \dots 2000$ GeV

Conclusions

- SM prediction for g 2:
 - All known particles relevant (and all QFT tricks)
 - Theory Initiative: worldwide (ongoing!) effort
- BSM contributions to g 2:
 - large effect needed
 - Connections to deep questions ~ Connection to dark matter/dark sector?
 - → Chirality flip enhancement, muon mass?
 - many models . . . and constraints
 - Exp. tests: Higgs couplings, *B*-physics, CLFV,
 EDM, light-particle searches, e⁺e⁻/muon collider
- Fermilab g 2 experiment
 - stat. dominated! Only 6% data used!
 - ... promising future

・ロト ・同ト ・ヨト ・ヨト

Theory Initiative prediction $a_{\mu}^{\rm SM} = (11\,659\,181.0~(4.3)~)~[10^{-10}]$

since 2017, 6 workshops, White Paper (2020), 132 authors, ongoing effort

Theory Initiative prediction $a_{\mu}^{\text{SM}} = (11\,659\,181.0\,(4.3)\,)\,[10^{-10}]$

since 2017, 6 workshops, White Paper (2020), 132 authors, ongoing effort

Theory Initiative prediction $a_{\mu}^{\rm SM} =$ (11659181.0 (4.3)) [10^{-10}]

since 2017, 6 workshops, White Paper (2020), 132 authors, ongoing effort

Theory Initiative prediction $a_{\mu}^{\text{SM}} = (11\,659\,181.0\,(4.3)\,)\,[10^{-10}]$

(0.0)

since 2017, 6 workshops, White Paper (2020), 132 authors, ongoing effort

Hadronic light-by-light:

- difficult QFT problem
- Traditionally: low-energy models
- Recently: data-driven (dispersion) relations) & lattice QCD results
- consistent results
- uncertainty better under control

Details on hadronic vacuum polarization

a^{HVP}

Status of Hadronic Vacuum Polarisation contributions

- TI WP2020 prediction uses dispersive data-driven evaluations with minimal model dependence
- a_μ^{HVP} value and error obtained by merging procedure → accounts for tensions in input data and differences in data treatment & combination (going beyond usual χ²_{min} inflation)
 Thomas Teubner

BSM 1-Loop Illustration

$$\delta m_{\mu} = \frac{1}{16\pi^{2}} \left\{ m_{\mu} \left[|c_{L}|^{2} + |c_{R}|^{2} \right] B_{1} + m_{F} \operatorname{Re} \left[c_{L} c_{R}^{*} \right] B_{0} \right\}$$
$$a_{\mu} = \frac{m_{\mu}}{16\pi^{2}} \left\{ \frac{m_{\mu}}{12m_{S}^{2}} \left[|c_{L}|^{2} + |c_{R}|^{2} \right] F_{1}^{C} + \frac{2m_{F}}{3m_{S}^{2}} \operatorname{Re} \left[c_{L} c_{R}^{*} \right] F_{2}^{C} \right\}$$

- |c_{L,R}|²-terms: → simple behaviour chir. flip ~ SM ~ m_µ
- $\operatorname{Re}[c_L c_R^*]$ -terms: \rightsquigarrow tricky/deceiving:
 - $c_L c_R \neq 0$ breaks chiral sym.
 - ► *F*, *S* cannot be gauge eigenstates
 - often $m_F c_L c_R \propto y_\mu \langle \Phi \rangle \propto m_\mu$

BSM 1-Loop Illustration

$$\delta m_{\mu} = \frac{1}{16\pi^2} \left\{ m_{\mu} \left[|c_L|^2 + |c_R|^2 \right] B_1 + m_F \operatorname{Re} \left[c_L c_R^* \right] B_0 \right\} \\ a_{\mu} = \frac{m_{\mu}}{16\pi^2} \left\{ \frac{m_{\mu}}{12m_S^2} \left[|c_L|^2 + |c_R|^2 \right] F_1^C + \frac{2m_F}{3m_S^2} \operatorname{Re} \left[c_L c_R^* \right] F_2^C \right\}$$

|c_{L,R}|²-terms: → simple behaviour chir. flip ~ SM ~ m_μ

• $\operatorname{Re}[c_L c_R^*]$ -terms: \rightsquigarrow tricky/deceiving:

- $c_L c_R \neq 0$ breaks chiral sym.
- ► *F*, *S* cannot be gauge eigenstates
- often $m_F c_L c_R \propto y_\mu \langle \Phi \rangle \propto m_\mu$

BSM 1-Loop Illustration

$$\delta m_{\mu} = \frac{1}{16\pi^{2}} \left\{ \begin{array}{c} m_{\mu} \left[|c_{L}|^{2} + |c_{R}|^{2} \right] B_{1} + m_{F} \operatorname{Re}\left[c_{L} c_{R}^{*} \right] B_{0} \right\} \\ a_{\mu} = \frac{m_{\mu}}{16\pi^{2}} \left\{ \frac{m_{\mu}}{12m_{S}^{2}} \left[|c_{L}|^{2} + |c_{R}|^{2} \right] F_{1}^{C} + \frac{2m_{F}}{3m_{S}^{2}} \operatorname{Re}\left[c_{L} c_{R}^{*} \right] F_{2}^{C} \right\}$$

 |c_{L,R}|²-terms: → simple behaviour chir. flip ~ SM ~ m_μ

- $\operatorname{Re}[c_L c_R^*]$ -terms: \rightsquigarrow tricky/deceiving:
 - $c_L c_R \neq 0$ breaks chiral sym.
 - ► *F*, *S* cannot be gauge eigenstates
 - often $m_F c_L c_R \propto y_\mu \langle \Phi \rangle \propto m_\mu$

Dominik Stöckinger

Backup

Full MSSM overview in 7 plots

[Peter Athron, Csaba Balasz, Douglas Jacob, Wojciech Kotlarski, DS, Hyejung Stöckinger-Kim, 2104.03691]

Full MSSM overview in 7 plots

[Peter Athron, Csaba Balasz, Douglas Jacob, Wojciech Kotlarski, DS, Hyejung Stöckinger-Kim, 2104.03691]

Summary: Bino-LSP: a_{μ} and DM. Wino-/Higgsino-LSP: a_{μ} . Both cha<slepton: \approx disfavoured.

DM+LHC 🗢 mass patterns! Coannihilation regions help! Specific cases excluded, e.g. Constrained MSSM 🕚 🗄 👘 🔮 🔗 🛇

Dominik Stöckinger Backup	30/23
---------------------------	-------

One-field, two-field models (renormalizable, spin 0, 1/2)

- many models: excluded
- very special models: chiral enhancement specific leptoquarks, specific 2HDM versions
- however, no dark matter

	Fain		Earth
	-	11.0.0	Trad or Ac. 23
÷.	÷.	13.5.21	
		11.8 - 1	
- A -	÷.	0.80	
		0.110	
	÷.	(3.3.42)	
		(X.A.1.0)	
	÷.	12.3 (10)	
		0.4 200	
		18.8.01	
		(hita)	
12		0.2.0	
10		0.8-0	
34	1.2	13.8.0	Roke on: dou co
-m		(5.8-1)	
- 16		13.5.0	Spond-secondate
10		10.0 - 11.0	Robinson I Warmed Mits Inch.

even more models: excluded
 no chirality flip
 few models: either a^{BNL}_μ or dark matter

_ ∢ ≣ →

Three-field models

- many models: viable, large chirality enhancements
- ${\small \bullet}$ can explain $a_{\mu}^{\rm BNL}$ and LHC and dark matter

