Long-lived particles in the see-saw portal

Daniele Barducci

based on 2003.08391, 2011.04725, 2201.11754, 22xx:yyyyy w/ Bertuzzo, Caputo, Hernandez, Mele, Taoso, Toni

Neutrino masses require new physics beyond the Standard Model

$$-\delta \mathcal{L} = y_{\nu} LHN + \frac{1}{2} m_N NN + h.c.$$

$$m_N \longrightarrow m_{\nu} \simeq \frac{y_{\nu}^2 v^2}{m_N}$$

RH neutrinos at the EW scale are a **target for collider searches** Small active-sterile mixing $\theta \simeq \sqrt{m_{\nu}/m_N}$ implies long lifetime for RH neutrinos

The naive see-saw scaling can be modified with $n \geq 2$ RH neutrinos

$$y_{\nu} \to Y_{\nu} \qquad m_N \to M_N \\ \qquad \qquad m_{\nu} \simeq v^2 Y_{\nu} \frac{1}{M_N} Y_{\nu}^T = U^* m_{\nu}^{(d)} U^{\dagger}$$
 Matrices

Solve for
$$Y_{\nu} \simeq \frac{1}{v} U^* \sqrt{m} \mathcal{R} \sqrt{M_N}$$
 and $\theta_{\nu N} \simeq -U^* \sqrt{m} \mathcal{R} \frac{1}{\sqrt{M_N}}$

 ${\cal R}$ is an $n\times n$ complex orthogonal matrix and $\sqrt{m}\sqrt{m}^T=m_{\nu}^{(d)}$

The imaginary entries of $\mathcal R$ cause an enhancement of the mixing [Casas+ 0103065]

The naive see-saw pheno can be modified by additional NP at a scale $\Lambda\gg m_N$

 $\mathcal{O}_{NH}=NNH^{\dagger}H$ and $\mathcal{O}_{NB}=N\sigma^{\mu\nu}NB_{\mu\nu}$ give new decay for h and Z Primary target for future Higgs and Z factories!!!

$$\boxed{\Gamma(h\to NN)\simeq \frac{1}{2\pi}\frac{v^2}{\Lambda^2}m_h \qquad \qquad \Gamma(Z\to N_1N_2)\simeq \frac{1}{16\pi^2}\frac{1}{6\pi\Lambda^2}s_w^2m_Z^3} \begin{array}{c} \text{Loop suppressed} \\ \text{[Craig+ 2001.00017]} \end{array}}$$

Higgs run

Collider	\sqrt{s} [GeV]	$\int \mathcal{L} \left[ab^{-1} \right]$	σ_{Zh} [fb]
FCC-ee	240	5	193
ILC	250	2 (pol)	297
CLIC-380	380	1 (pol)	133
CEPC	240	5.6	193

Z pole run

Collider	\sqrt{s} [GeV]	$\int \mathcal{L} \left[ab^{-1} \right]$	N_Z
FCC-ee	m_Z	150	6.5×10^{12}
CEPC	m_Z	16	6.9×10^{11}

- Consider displaced decay within $L \in [0.1~{\rm cm}, 1~{\rm m}]~$ with $\mathcal{P}(x_i, x_f) = e^{-\frac{x_i}{\beta \gamma c \tau}} e^{-\frac{x_f}{\beta \gamma c \tau}}$
- Majorana nature allows for same-sign lepton from $NN \to \ell^+\ell^+ 4q$
- Negligible background due to lepton number conservation in the SM
- Clean channel with ~20% of decay rate

- Direct limits well beyond attainable sensitivity from precision measurements
- Test of NP in the multi-TeV regime for Λ [See Caputo+ 1704.08721 for related LHC analysis]
- See 2011.04725 for the prompt and collider stable cases

At any d=6 many more operators... [Liao+ 1612.04527]

	-		
	Operator		
\mathcal{O}_{LNH}^{6}	$(\bar{L}\tilde{H}N_R)(H^{\dagger}H) + h.c.$		
\mathcal{O}_{LNB}^6	$(\bar{L}\sigma^{\mu\nu}N_R)B_{\mu\nu}\tilde{H} + h.c$		
\mathcal{O}_{LNW}^6	$(\bar{L}\sigma^{\mu\nu}N_R)\sigma^aW^a_{\mu\nu}\tilde{H} + h.c$		
\mathcal{O}_{NH}^6	$(ar{N}_R \gamma^\mu N_R) (H^\dagger i \overleftrightarrow{D}_\mu H)$		
\mathcal{O}_{NeH}^6	$(ar{N}_R \gamma^\mu e_R) (ilde{H}^\dagger i \overleftrightarrow{D}_\mu H) + h.c.$		
$\overline{\mathcal{O}_{4N}^6}$	$(\bar{N}_R^c N_R)(\bar{N}_R^c N_R) + h.c.$		
\mathcal{O}_{Nedu}^6	$(ar{N}_R \gamma^\mu e_R) (ar{d}_R \gamma_\mu u_R)$		
\mathcal{O}_{NLqu}^{6}	$(ar{N}_R L)(ar{q}_L u_R) + h.c$		
\mathcal{O}_{LNqd}^{6}	$(\bar{L}N_R)arepsilon(ar{q}_Ld_R)+h.c$		
\mathcal{O}_{LdaN}^6	$(\bar{L}d_R)arepsilon(ar{q}_LN_R)+h.c$		
$rac{\mathcal{O}_{LNLe}^6}{\mathcal{O}_{Ne}^6}$	$(\bar{L}N_R)\varepsilon(\bar{L}e_R) + h.c$		
$\overline{\mathcal{O}_{Ne}^6}$	$(ar{N}_R \gamma^\mu N_R) (ar{e}_R \gamma_\mu e_R)$		
\mathcal{O}_{Nu}^6	$(ar{N}_R \gamma^\mu N_R) (ar{u}_R \gamma_\mu u_R)$		
\mathcal{O}_{Nd}^6	$(ar{N}_R \gamma^\mu N_R) (ar{d}_R \gamma_\mu d_R)$		
\mathcal{O}_{Nq}^6	$(ar{N}_R \gamma^\mu N_R) (ar{q}_L \gamma_\mu q_L)$		
\mathcal{O}_{NL}^6	$(ar{N}_R \gamma^\mu N_R) (ar{L}_L \gamma_\mu L_L)$		
\mathcal{O}_{NN}^6	$(ar{N}_R \gamma^\mu N_R) (ar{N}_R \gamma_\mu N_R)$		
\mathcal{O}_{uddN}^6	$(\bar{u}_R^c d_R \bar{d}_R^c) N_R + h.c.$		
\mathcal{O}_{qqdN}^6	$(\bar{q}_L^c \varepsilon q_L \bar{d}_R^c) N_R + h.c.$		

They induce additional decay modes...

	Operator	Decay	Mixing	Loop
		$N o u \gamma$	×	✓
	$\mathcal{O}^6_{LNB,W}$	$N \to \nu Z^*$	×	\checkmark
	7**	$N \to \ell W^*$	×	\checkmark
	\mathcal{O}_{LNH}^{6}	$N o u H^*$	×	×
	\mathcal{O}_{NH}^6	$N \to \nu Z^*$	\checkmark	×
	${\cal O}_{NeH}^6$	$N \to \ell W^*$	×	×
\mathcal{O}_{4f}^6	$-\ neutral$	N o 3f	\checkmark	×
	$-\ charged$	$N \to 3f$	×	×

...that can dominate over the mixing

- Four-fermi operators give $\,\sigma \sim \frac{s}{\Lambda^4}\,$
- Interesting target for multi-TeV collider

High-energy run

Collider	\sqrt{s} [TeV]	$\int \mathcal{L} \left[ab^{-1} \right]$
CLIC	3	3
$\mu\mu$	3	1

Two interesting channels: $N \to \nu \gamma$ and $N \to 3f$

- See 2201.11754 for the prompt and collider stable cases

Many experiments are sensitive to $c au\sim\mathcal{O}(10-100)~\mathrm{m}$ faser, mathusla, anubis, codex-b, moedal-mapp, alsx, facet, ship, snd@lhc...

Can they test this scenario? Focus on the simplest case:no mixing and only \mathcal{O}_{NB}^{5}

$$\mathcal{O}_{NB}^5 = N_1 \sigma^{\mu\nu} N_2 B_{\mu\nu} \qquad \text{The decay length is controlled by the mass splitting}$$

$$c\tau \simeq 0.5 \text{ m} \left(\frac{0.1}{\delta}\right)^3 \left(\frac{\Lambda}{100 \text{ GeV}}\right)^2 \left(\frac{0.1 \text{ GeV}}{m_{N_1}}\right)^3 \qquad \delta = \frac{m_{N_2} - m_{N_1}}{m_{N_1}}$$

For $m_N \lesssim 1 \; {\rm GeV}$ dominant production via meson decay

The signature is a single photon

FASER capable of tagging this final state. What's about other experiments? **Experimental input welcome!!!**

Conclusions

- Beyond the minimal see-saw paradigm many more opportunities for LLPs
 - with $n \geq 2$ RHN lifetime can span many order of magnitude in c au
 - d>4 operators in the $\nu {\rm SMEFT}$ induce extra production and decay modes
- For decay lengths $0.1~{\rm cm} \lesssim L \lesssim 1~{\rm m}$ collider searches are effective
 - Higgs and Z factories can test multi-TeV regimes in the $u {
 m SMEFT}$
 - Higher sensitivity with respect to indirect precision measurements
- Larger decay length can be tested by displace facilities
 - Simplest signature has a single photon. Challenging! is it feasible?
 - Many more channels to be explored including interplay with the mixing

Conclusions

- Beyond the minimal see-saw paradigm many more opportunities for LLPs
 - with $n \geq 2$ RHN lifetime can span many order of magnitude in c au
 - d>4 operators in the $\nu {\rm SMEFT}$ induce extra production and decay modes
- For decay lengths $0.1~{
 m cm} \lesssim L \lesssim 1~{
 m m}$ collider searches are effective
 - Higgs and Z factories can test multi-TeV regimes in the $u {
 m SMEFT}$
 - Higher sensitivity with respect to indirect precision measurements
- Larger decay length can be tested by displace facilities
 - Simplest signature has a single photon. Challenging! is it feasible?
 - Many more channels to be explored including interplay with the mixing

